江苏省扬州市2018年中考数学真题试题
一、选择题:
1. 的倒数是( )
A. B. C. 5 D.
【答案】A
【解析】分析:根据倒数的定义进行解答即可.
详解:∵(-5)×(-)=1,
∴-5的倒数是-.
故选A.
2. 使有意义的的取值范围是( )
A. B. C. D.
【答案】C
【解析】分析:根据被开方数是非负数,可得答案.
详解:由题意,得
x-3≥0,
解得x≥3,
故选C.
点睛:本题考查了二次根式有意义的条件,利用得出不等式是解题关键.
3. 如图所示的几何体的主视图是( )
A. B. C. D.
【答案】B
【解析】根据主视图的定义,
几何体的主视图由三层小正方形组成,
下层有三个小正方形,二三层各有一个小正方形,
23
故选B.
4. 下列说法正确的是( )
A. 一组数据2,2,3,4,这组数据的中位数是2
B. 了解一批灯泡的使用寿命的情况,适合抽样调查
C. 小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分
D. 某日最高气温是,最低气温是,则该日气温的极差是
【答案】B
【解析】分析:直接利用中位数的定义以及抽样调查的意义和平均数的求法、极差的定义分别分析得出答案.
详解:A、一组数据2,2,3,4,这组数据的中位数是2.5,故此选项错误;
B、了解一批灯泡的使用寿命的情况,适合抽样调查,正确;
C、小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是130分,故此选项错误;
D、某日最高气温是7℃,最低气温是-2℃,则改日气温的极差是7-(-2)=9℃,故此选项错误;
故选B.
点睛:此题主要考查了中位数、抽样调查的意义和平均数的求法、极差,正确把握相关定义是解题关键.
5. 已知点、都在反比例函数的图象上,则下列关系式一定正确的是( )
A. B. C. D.
【答案】A
【解析】分析:根据反比例函数的性质,可得答案.
详解:由题意,得
k=-3,图象位于第二象限,或第四象限,
在每一象限内,y随x的增大而增大,
∵3<6,
∴x1<x2<0,
故选A.
点睛:本题考查了反比例函数,利用反比例函数的性质是解题关键.
6. 在平面直角坐标系的第二象限内有一点,点到轴的距离为3,到轴的距离为4,则点的坐标是( )
23
A. B. C. D.
【答案】C
【解析】分析:根据地二象限内点的坐标特征,可得答案.
详解:由题意,得
x=-4,y=3,
即M点的坐标是(-4,3),
故选C.
点睛:本题考查了点的坐标,熟记点的坐标特征是解题关键.横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.
7. 在中,,于,平分交于,则下列结论一定成立的是( )
A. B. C. D.
【答案】C
【解析】分析:根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.
详解:∵∠ACB=90°,CD⊥AB,
∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,
∴∠BCD=∠A.
∵CE平分∠ACD,
∴∠ACE=∠DCE.
又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,
∴∠BEC=∠BCE,
∴BC=BE.
故选C.
23
点睛:本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.
8. 如图,点在线段上,在的同侧作等腰和等腰,与、分别交于点、.对于下列结论:
①;②;③.其中正确的是( )
A. ①②③ B. ① C. ①② D. ②③
【答案】A
【解析】分析:(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;
(2)通过等积式倒推可知,证明△PAM∽△EMD即可;
(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.
详解:由已知:AC=AB,AD=AE
∴
∵∠BAC=∠EAD
∴∠BAE=∠CAD
∴△BAE∽△CAD
所以①正确
∵△BAE∽△CAD
∴∠BEA=∠CDA
∵∠PME=∠AMD
∴△PME∽△AMD
∴
∴MP•MD=MA•ME
所以②正确
∵∠BEA=∠CDA
∠PME=∠AMD
∴P、E、D、A四点共圆
23
∴∠APD=∠EAD=90°
∵∠CAE=180°-∠BAC-∠EAD=90°
∴△CAP∽△CMA
∴AC2=CP•CM
∵AC=AB
∴2CB2=CP•CM
所以③正确
故选A.
点睛:本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.
二、填空题
9. 在人体血液中,红细胞直径约为,数据0.00077用科学记数法表示为__________.
【答案】
【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
详解:0.00077=7.7×10-4,
故答案为:7.7×10-4.
点睛:本题主要考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
10. 因式分解:__________.
【答案】
【解析】分析:原式提取2,再利用平方差公式分解即可.
详解:原式=2(9-x2)=2(x+3)(3-x),
故答案为:2(x+3)(3-x)
点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
11. 有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.
【答案】
【解析】分析:根据题意,使用列举法可得从有4根细木棒中任取3
23
根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.
详解:根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,
而能搭成一个三角形的有2、3、4;3、4、5,二种;
故其概率为:.
点睛:本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.
12. 若是方程的一个根,则的值为__________.
【答案】2018
【解析】分析:根据一元二次方程的解的定义即可求出答案.
详解:由题意可知:2m2-3m-1=0,
∴2m2-3m=1
∴原式=3(2m2-3m)+2015=2018
故答案为:2018
点睛:本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.
13. 用半径为,圆心角为的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为__________.
【答案】
【解析】分析:圆锥的底面圆半径为r,根据圆锥的底面圆周长=扇形的弧长,列方程求解.
详解:设圆锥的底面圆半径为r,依题意,得
2πr=,
解得r=cm.
故答案为:.
点睛:本题考查了圆锥的计算.圆锥的侧面展开图为扇形,计算要体现两个转化:1、圆锥的母线长为扇形的半径,2、圆锥的底面圆周长为扇形的弧长.
14. 不等式组的解集为__________.
23
【答案】
【解析】分析:先求出每个不等式的解集,再根据口诀求出不等式组的解集即可.
详解:解不等式3x+1≥5x,得:x≤,
解不等式,得:x>-3,
则不等式组的解集为-3<x≤,
故答案为:-3<x≤.
点睛:此题考查了一元一次不等式组的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
15. 如图,已知的半径为2,内接于,,则__________.
【答案】
【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.
详解:连接AD、AE、OA、OB,
∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,
∴∠ADB=45°,
∴∠AOB=90°,
∵OA=OB=2,
∴AB=2,
故答案为:2.
23
点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
16. 关于的方程有两个不相等的实数根,那么的取值范围是__________.
【答案】且
【解析】分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m>0且m≠0,求出m的取值范围即可.
详解:∵一元二次方程mx2-2x+3=0有两个不相等的实数根,
∴△>0且m≠0,
∴4-12m>0且m≠0,
∴m<且m≠0,
故答案为:m<且m≠0.
点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.
17. 如图,四边形是矩形,点的坐标为,点的坐标为,把矩形沿折叠,点落在点处,则点的坐标为__________.
【答案】
【解析】分析:由折叠的性质得到一对角相等,再由矩形对边平行得到一对内错角相等,等量代换及等角对等边得到BE=OE,利用AAS得到三角形OED与三角形BEA全等,由全等三角形对应边相等得到DE=AE,过D作DF垂直于OE,利用勾股定理及面积法求出DF与OF的长,即可确定出D坐标.
详解:由折叠得:∠CBO=∠DBO,
∵矩形ABCO,
∴BC∥OA,
∴∠CBO=∠BOA,
23
∴∠DBO=∠BOA,
∴BE=OE,
在△ODE和△BAE中,
,
∴△ODE≌△BAE(AAS),
∴AE=DE,
设DE=AE=x,则有OE=BE=8-x,
在Rt△ODE中,根据勾股定理得:42+(8-x)2=x2,
解得:x=5,即OE=5,DE=3,
过D作DF⊥OA,
∵S△OED=OD•DE=OE•DF,
∴DF=,OF=,
则D(,-).
故答案为:(,-).
点睛:此题考查了翻折变化(折叠问题),坐标与图形变换,以及矩形的性质,熟练掌握折叠的性质是解本题的关键.
18. 如图,在等腰中,,点的坐标为,若直线:把分成面积相等的两部分,则的值为__________.
23
【答案】
【解析】分析:根据题意作出合适的辅助线,然后根据题意即可列出相应的方程,从而可以求得m的值.
详解:∵y=mx+m=m(x+1),
∴函数y=mx+m一定过点(-1,0),
当x=0时,y=m,
∴点C的坐标为(0,m),
由题意可得,直线AB的解析式为y=-x+2,
,得,
∵直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,
∴,
解得,m=或m=(舍去),
故答案为:.
点睛:本题考查一次函数图象上点的坐标特征、等腰直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
三、解答题
19. 计算或化简.
23
(1);(2).
【答案】(1)4;(2)
【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.
(2)利用完全平方公式和平方差公式即可.
详解:(1)()-1+|−2|+tan60°
=2+(2-)+
=2+2-+
=4
(2)(2x+3)2-(2x+3)(2x-3)
=(2x)2+12x+9-[(2x2)-9]
=(2x)2+12x+9-(2x)2+9
=12x+18
点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.
20. 对于任意实数、,定义关于“”的一种运算如下:.例如.
(1)求的值;
(2)若,且,求的值.
【答案】(1);(2).
【解析】分析:(1)根据新定义型运算法则即可求出答案.
(2)列出方程组即可求出答案
详解:(1)
(2)由题意得 ∴.
点睛:本题考查新定义型运算,解题的关键是正确利用运算法则,本题属于基础题型.
21. 江苏省第十九届运动会将于2018年9月在扬州举行开幕式,某校为了了解学生“最喜爱的省运会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.
23
最喜爱的省运会项目的人数调查统计表
根据以上信息,请回答下列问题:
(1)这次调查的样本容量是 , ;
(2)扇形统计图中“自行车”对应的扇形的圆心角为 度;
(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.
【答案】(1)50人,;(2);(3)该校最喜爱的省运动会项目是篮球的学生人数为480人.
【解析】分析:(1)依据9÷18%,即可得到样本容量,进而得到a+b的值;
(2)利用圆心角计算公式,即可得到“自行车”对应的扇形的圆心角;
(3)依据最喜爱的省运会项目是篮球的学生所占的比例,即可估计该校最喜爱的省运会项目是篮球的学生人数.
详解:(1)样本容量是9÷18%=50,
a+b=50-20-9-10=11,
故答案为:50,11;
(2)“自行车”对应的扇形的圆心角=×360°=72°,
故答案为:72°;
(3)该校最喜爱的省运会项目是篮球的学生人数为:1200×=480(人).
点睛:本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.
22. 4张相同的卡片上分别写有数字-1、-3、4、6,将卡片的背面朝上,并洗匀.
(1)从中任意抽取1张,抽到的数字是奇数的概率是 ;
(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数中的;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数中的.
23
利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.
【答案】(1);(2).
【解析】解:(1)总共有四个,奇数有两个,所以概率就是
(2)根据题意得:一次函数图形过第一、二、四象限,则
∴图象经过第一、二、四象限的概率是.
分析:(1)直接利用概率公式求解;
(2)画树状图展示所有12种等可能的结果数,利用一次获胜的性质,找出k<0,b>0的结果数,然后根据概率公式求解.
详解:(1)从中任意抽取1张,抽到的数字是奇数的概率=;
故答案为;
(2)画树状图为:
共有12种等可能的结果数,其中k<0,b>0有4种结果,
所以这个一次函数的图象经过第一、二、四象限的概率=.
点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了一次函数的性质.
23. 京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长,是我国最繁忙的铁路干线之一.如果从北京到上海的客车速度是货车速度的2倍,客车比货车少用,那么货车的速度是多少?(精确到)
【答案】货车的速度是千米/小时.
【解析】分析:设货车的速度是x千米/小时,则客车的速度是2x千米/小时,根据时间=路程÷速度结合客车比货车少用6小时,即可得出关于x的分式方程,解之经检验后即可得出结论.
详解:设货车的速度为
由题意得
23
经检验是该方程的解
答:货车的速度是千米/小时.
点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
24. 如图,在平行四边形中,,点是的中点,连接并延长,交的延长线于点,连接.
(1)求证:四边形是菱形;
(2)若,,求菱形的面积.
【答案】(1)证明见解析;(2).
【解析】分析:(1)由△AFD≌△BFE,推出AD=BE,可知四边形AEBD是平行四边形,再根据BD=AD可得结论;
(2)解直角三角形求出EF的长即可解决问题;
详解:(1)∵四边形是平行四边形
∴,∴
∵是的中点,∴
∴在与中,
∵,∴四边形是平行四边形
∵,∴四边形是菱形
(2)∵四边形是菱形,
∴,
∴
∵
∴
∴
∵,
∴,
23
∴.
25. 如图,在中,,于点,于点,以点为圆心,为半径作半圆,交于点.
(1)求证:是的切线;
(2)若点是的中点,,求图中阴影部分的面积;
(3)在(2)的条件下,点是边上的动点,当取最小值时,直接写出的长.
【答案】(1)证明见解析;(2);(3).
【解析】分析:(1)过作垂线,垂足为,证明OM=OE即可;
(2)根据“S△AEO-S扇形EOF=S阴影”进行计算即可;
(3)作关于的对称点,交于,连接交于,此时最小.通过证明∽即可求解
详解:(1)过作垂线,垂足为
∵,
∴平分
∵
∴
∵为⊙的半径,
23
∴为⊙的半径,
∴是⊙的切线
(2)∵且是的中点
∴,,
∴
∵
∴即,
∴
(3)作关于的对称点,交于,连接交于
此时最小
由(2)知,,
∴
∵
∴,,
∵,
∴∽
∴即
∵,
∴即,
∴.
点睛:本题是圆的综合题,主要考查了圆的切线的判定,不规则图形的面积计算以及最短路径问题.找出点E的对称点G是解决一题的关键.
26. “扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.
23
(1)求与之间的函数关系式;
(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.
【答案】(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.
【解析】分析:(1)可用待定系数法来确定y与x之间的函数关系式;
(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;
(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.
详解:(1)由题意得: .
故y与x之间的函数关系式为:y=-10x+700,
(2)由题意,得
-10x+700≥240,
解得x≤46,
设利润为w=(x-30)•y=(x-30)(-10x+700),
23
w=-10x2+1000x-21000=-10(x-50)2+4000,
∵-10<0,
∴x<50时,w随x的增大而增大,
∴x=46时,w大=-10(46-50)2+4000=3840,
答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;
(3)w-150=-10x2+1000x-21000-150=3600,
-10(x-50)2=-250,
x-50=±5,
x1=55,x2=45,
如图所示,由图象得:
当45≤x≤55时,捐款后每天剩余利润不低于3600元.
点睛:此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.
27. 问题呈现
如图1,在边长为1的正方形网格中,连接格点、和、,与相交于点,求的值.
方法归纳
求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题.比如连接格点、,可得,则,连接,那么就变换到中.
23
问题解决
(1)直接写出图1中的值为_________;
(2)如图2,在边长为1的正方形网格中,与相交于点,求的值;
思维拓展
(3)如图3,,,点在上,且,延长到,使,连接交的延长线于点,用上述方法构造网格求的度数.
【答案】(1)见解析;(2);(3)
【解析】分析:(1)根据方法归纳,运用勾股定理分别求出MN和DM的值,即可求出的值;
(2)仿(1)的思路作图,即可求解;
(3)方法同(2)
详解:
(1)如图进行构造
由勾股定理得:DM=,MN=,DN=
∵()2+()2=()2
∴DM2+MN2=DN2
∴△DMN是直角三角形.
∵MN∥EC
∴∠CPN=∠DNM,
23
∵tan∠DNM=,
∴=2.
(2)
∵,
∴
∴
(3),证明同(2).
点睛:本题考查了非直角三角形中锐角三角函数值的求法. 求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形是解题的关键.
28. 如图1,四边形是矩形,点的坐标为,点的坐标为.点从点出发,沿以每秒1个单位长度的速度向点运动,同时点从点出发,沿以每秒2个单位长度的速度向点运动,当点与点重合时运动停止.设运动时间为秒.
(1)当时,线段的中点坐标为________;
(2)当与相似时,求的值;
(3)当时,抛物线经过、两点,与轴交于点,抛物线的顶点为,如图2所示.问该抛物线上是否存在点,使,若存在,求出所有满足条件的点坐标;若不存在,说明理由.
【答案】(1)的中点坐标是;(2)或;(3),.
【解析】分析:(1)先根据时间t=2,和速度可得动点P和Q的路程OP和AQ的长,再根据中点坐标公式可得结论;
(2)根据矩形的性质得:∠B=∠PAQ=90°,所以当△CBQ与△PAQ相似时,存在两种情况:
23
①当△PAQ∽△QBC时,,②当△PAQ∽△CBQ时,,分别列方程可得t的值;
(3)根据t=1求抛物线的解析式,根据Q(3,2),M(0,2),可得MQ∥x轴,∴KM=KQ,KE⊥MQ,画出符合条件的点D,证明△KEQ∽△QMH,列比例式可得点D的坐标,同理根据对称可得另一个点D.
详解:(1)如图1,∵点A的坐标为(3,0),
∴OA=3,
当t=2时,OP=t=2,AQ=2t=4,
∴P(2,0),Q(3,4),
∴线段PQ的中点坐标为:(,),即(,2);
故答案为:(,2);
(2)如图1,∵四边形OABC是矩形,
∴∠B=∠PAQ=90°
∴当△CBQ与△PAQ相似时,存在两种情况:
①当△PAQ∽△QBC时,,
∴,
4t2-15t+9=0,
(t-3)(t-)=0,
t1=3(舍),t2=,
②当△PAQ∽△CBQ时,,
∴,
t2-9t+9=0,
t=,
∵0≤t≤6,>7,
∴x=不符合题意,舍去,
综上所述,当△CBQ与△PAQ相似时,t的值是或;
(3)当t=1时,P(1,0),Q(3,2),
23
把P(1,0),Q(3,2)代入抛物线y=x2+bx+c中得:
,解得:,
∴抛物线:y=x2-3x+2=(x-)2-,
∴顶点k(,-),
∵Q(3,2),M(0,2),
∴MQ∥x轴,
作抛物线对称轴,交MQ于E,
∴KM=KQ,KE⊥MQ,
∴∠MKE=∠QKE=∠MKQ,
如图2,∠MQD=∠MKQ=∠QKE,设DQ交y轴于H,
∵∠HMQ=∠QEK=90°,
∴△KEQ∽△QMH,
∴,
∴,
∴MH=2,
∴H(0,4),
易得HQ的解析式为:y=-x+4,
则,
23
x2-3x+2=-x+4,
解得:x1=3(舍),x2=-,
∴D(-,);
同理,在M的下方,y轴上存在点H,如图3,使∠HQM=∠MKQ=∠QKE,
由对称性得:H(0,0),
易得OQ的解析式:y=x,
则,
x2-3x+2=x,
解得:x1=3(舍),x2=,
∴D(,);
综上所述,点D的坐标为:D(-,)或(,).
点睛:本题是二次函数与三角形相似的综合问题,主要考查相似三角形的判定和性质的综合应用,三角形和四边形的面积,二次函数的最值问题的应用,函数的交点等知识,本题比较复杂,注意用t表示出线段长度,再利用相似即可找到线段之间的关系,代入可解决问题.
23