考点7 二次根式
一.选择题(共15小题)
1.(2018•怀化)使有意义的x的取值范围是( )
A.x≤3 B.x<3 C.x≥3 D.x>3
【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.
【解答】解:∵式子有意义,
∴x﹣3≥0,
解得x≥3.
故选:C.
2.(2018•扬州)使有意义的x的取值范围是( )
A.x>3 B.x<3 C.x≥3 D.x≠3
【分析】根据被开方数是非负数,可得答案.
【解答】解:由题意,得
x﹣3≥0,
解得x≥3,
故选:C.
3.(2018•达州)二次根式中的x的取值范围是( )
A.x<﹣2 B.x≤﹣2 C.x>﹣2 D.x≥﹣2
【分析】根据被开方数是非负数,可得答案.
【解答】解:由题意,得
2x+4≥0,
解得x≥﹣2,
故选:D.
4.(2018•苏州)若在实数范围内有意义,则x的取值范围在数轴上表示正确的是( )
A. B. C. D.
9
【分析】根据二次根式有意义的条件列出不等式,解不等式,把解集在数轴上表示即可.
【解答】解:由题意得x+2≥0,
解得x≥﹣2.
故选:D.
5.(2018•临安区)化简的结果是( )
A.﹣2 B.±2 C.2 D.4
【分析】本题可先将根号内的数化简,再开根号,根据开方的结果为正数可得出答案.
【解答】解: ==2.
故选:C.
6.(2018•无锡)下列等式正确的是( )
A.()2=3 B. =﹣3 C. =3 D.(﹣)2=﹣3
【分析】根据二次根式的性质把各个二次根式化简,判断即可.
【解答】解:()2=3,A正确;
=3,B错误;
==3,C错误;
(﹣)2=3,D错误;
故选:A.
7.(2018•张家界)下列运算正确的是( )
A.a2+a=2a3 B. =a C.(a+1)2=a2+1 D.(a3)2=a6
【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变; =a (a≥0);完全平方公式:(a±b)2=a2±2ab+b2;幂的乘方法则:底数不变,指数相乘进行计算即可.
【解答】解:A、a2和a不是同类项,不能合并,故原题计算错误;
B、=|a|,故原题计算错误;
9
C、(a+1)2=a2+2a+1,故原题计算错误;
D、(a3)2=a6,故原题计算正确;
故选:D.
8.(2018•临安区)下列各式计算正确的是( )
A.a12÷a6=a2 B.(x+y)2=x2+y2
C. D.
【分析】此类题目难度不大,可用验算法解答.
【解答】解:A、a12÷a6是同底数幂的除法,指数相减而不是相除,所以a12÷a6=a6,错误;
B、(x+y)2为完全平方公式,应该等于x2+y2+2xy,错误;
C、===﹣,错误;
D、正确.
故选:D.
9.(2018•绵阳)等式=成立的x的取值范围在数轴上可表示为( )
A. B. C. D.
【分析】根据二次根式有意义的条件即可求出x的范围.
【解答】解:由题意可知:
解得:x≥3
故选:B.
10.(2018•曲靖)下列二次根式中能与2合并的是( )
A. B. C. D.
【分析】先化简选项中各二次根式,然后找出被开方数为3的二次根式即可.
【解答】解:A、,不能与2合并,错误;
B、能与2合并,正确;
C、不能与2合并,错误;
9
D、不能与2合并,错误;
故选:B.
11.(2018•孝感)下列计算正确的是( )
A.a﹣2÷a5= B.(a+b)2=a2+b2 C.2+=2 D.(a3)2=a5
【分析】直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.
【解答】解:A、a﹣2÷a5=,正确;
B、(a+b)2=a2+2ab+b2,故此选项错误;
C、2+,无法计算,故此选项错误;
D、(a3)2=a6,故此选项错误;
故选:A.
12.(2018•郴州)下列运算正确的是( )
A.a3•a2=a6 B.a﹣2=﹣ C.3﹣2= D.(a+2)(a﹣2)=a2+4
【分析】直接利用同底数幂的乘除运算法则以及负指数幂的性质以及二次根式的加减运算法则、平方差公式分别计算得出答案.
【解答】解:A、a3•a2=a5,故此选项错误;
B、a﹣2=,故此选项错误;
C、3﹣2=,故此选项正确;
D、(a+2)(a﹣2)=a2﹣4,故此选项错误.
故选:C.
13.(2018•长沙)下列计算正确的是( )
A.a2+a3=a5 B.3 C.(x2)3=x5 D.m5÷m3=m2
【分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.
【解答】解:A、a2+a3,无法计算,故此选项错误;
9
B、3﹣2=,故此选项错误;
C、(x2)3=x6,故此选项错误;
D、m5÷m3=m2,正确.
故选:D.
14.(2018•泰州)下列运算正确的是( )
A. += B. =2 C. •= D.÷=2
【分析】利用二次根式的加减法对A进行判断;根据二次根式的性质对B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.
【解答】解:A、与不能合并,所以A选项错误;
B、原式=3,所以B选项错误;
C、原式==,所以C选项错误;
D、原式==2,所以D选项正确.
故选:D.
15.(2018•聊城)下列计算正确的是( )
A.3﹣2= B. •(÷)=
C.(﹣)÷=2 D. ﹣3=
【分析】根据二次根式的加减乘除运算法则逐一计算可得.
【解答】解:A、3与﹣2不是同类二次根式,不能合并,此选项错误;
B、•(÷)=•==,此选项正确;
C、(﹣)÷=(5﹣)÷=5﹣,此选项错误;
D、﹣3=﹣2=﹣,此选项错误;
故选:B.
二.填空题(共10小题)
16.(2018•泸州)若二次根式在实数范围内有意义,则x的取值范围是 x≥1 .
【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.
9
【解答】解:∵式子在实数范围内有意义,
∴x﹣1≥0,
解得x≥1.
故答案为:x≥1.
17.(2018•广州)如图,数轴上点A表示的数为a,化简:a+= 2 .
【分析】直接利用二次根式的性质以及结合数轴得出a的取值范围进而化简即可.
【解答】解:由数轴可得:
0<a<2,
则a+
=a+
=a+(2﹣a)
=2.
故答案为:2.
18.(2018•郴州)计算: = 3 .
【分析】原式利用平方根的定义化简即可得到结果.
【解答】解:原式=3.
故答案为:3
19.(2018•烟台)与最简二次根式5是同类二次根式,则a= 2 .
【分析】先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可.
【解答】解:∵与最简二次根式是同类二次根式,且,
∴a+1=3,解得:a=2.
故答案为2.
9
20.(2018•滨州)观察下列各式:
=1+,
=1+,
=1+,
……
请利用你所发现的规律,
计算+++…+,其结果为 9 .
【分析】直接根据已知数据变化规律进而将原式变形求出答案.
【解答】解:由题意可得:
+++…+
=1++1++1++…+1+
=9+(1﹣+﹣+﹣+…+﹣)
=9+
=9.
故答案为:9.
21.(2018•哈尔滨)计算6﹣10的结果是 4 .
【分析】首先化简,然后再合并同类二次根式即可.
【解答】解:原式=6﹣10×=6﹣2=4,
故答案为:4.
22.(2018•武汉)计算的结果是
9
【分析】根据二次根式的运算法则即可求出答案.
【解答】解:原式=+﹣=
故答案为:
23.(2018•天津)计算(+)(﹣)的结果等于 3 .
【分析】利用平方差公式计算即可.
【解答】解:(+)(﹣)
=()2﹣()2
=6﹣3
=3,
故答案为:3.
24.(2018•枣庄)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC的面积为 1 .
【分析】根据题目中的面积公式可以求得△ABC的三边长分别为1,2,的面积,从而可以解答本题.
【解答】解:∵S=,
∴△ABC的三边长分别为1,2,,则△ABC的面积为:
S==1,
故答案为:1.
9
25.(2018•天门)计算: +|﹣2|﹣()﹣1= 0 .
【分析】根据二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则计算即可.
【解答】解:原式=+2﹣﹣2
=0
故答案为:0.
三.解答题(共1小题)
26.(2018•陕西)计算:(﹣)×(﹣)+|﹣1|+(5﹣2π)0
【分析】先进行二次根式的乘法运算,再利用绝对值的意义和零指数幂的意义计算,然后合并即可.
【解答】解:原式=+﹣1+1
=3+﹣1+1
=4.
9