四川省自贡市初2019届毕业生学业考试数学
本试卷分第I卷(选择题)和第II卷(非选择题)两部分。共6页,满分150分.
答卷前,考生务必将自己的姓名,准考证号填写在答题卡上,答卷时必须将答案答在答题卡上,在本试卷,草稿纸上,答题无效,考试结束后,将试题卷和答题卡一并交回.
第I卷选择题 (共48分)
注意事项:必须使用2B铅笔将答案标号填涂在答题卡上对应题目标号的位置上.如需改动,用橡皮擦干净后,再选涂其他答案标号
一.选择题(每小题4分,共48分)
1.-2019的倒数是( B )
A.-2019 B. C. D.2019
2.近年来,中国高铁发展迅速,高铁技术不断走出国门成为展示强国实力的新名片,现在中国高速铁路营运里程将达到23000公里,将23000用科学记数法表示为( A )
A. B. C. D.
3.下列图案中,既是轴对称图形,又是中心对称图形的是( D )
4.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均数都是90分,甲的方差是15,乙的成绩方差是3,下列说法正确的是( B )
A.甲的成绩比乙的成绩稳定 B.乙的成绩比甲的成绩稳定
C.甲、乙两人成绩一样稳定 D.无法确定甲、乙的成绩谁更稳定
5.下图是一个水平放置的全封闭物体,则它的俯视图是( C )
12
6.已知三角形的两边长分别为1和4,第三边为整数,则该三角形周长为( C )
A.7 B.8 C.9 D.10
7.实数m,n在数轴上对应点的位置如图所示,则下列判断正确的是( B )
A.|m|<1 B.1-m>1 C.mn>0 D.m+1>0
8.关于的一元二次方程,无实数根,则实数的取值范围是( D )
A. B. C. D.
9.一次函数y=ax+b与反比例函数的图象如图所示,则二次函数y=ax²+bx+c的大致图象是( A )
10.均匀的向一个容器内注水,在注满水的过程中,水面的高度h与时间t的函数关系如图所示,则该容器是下列四个中的( D )
11.图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板,翻折起来后,就能形成一个圆形桌面(可近似看作正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近( C )
A. B. C. D.
12
12.如图,已知A、B两点的坐标分别为(8,0),(0,8)点C、F分别是直线和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取最小值时,tan∠BAD的值是( B )
A. B. C. D.
第II卷非选择题 (共102分)
注意事项:必须使用0.5毫米黑色墨水签字笔在答题卡上题目所指区域内作答,作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨水签字笔描清楚.答在试题卷上无效.
二.填空题(每小题4分,共24分)
13.如图直线AB,CD被直线EF所截,AB∥CD,∠1=120°,则∠2= 60°.
14.在一次有12人参加的数学测试中,得100分,95分,90分,85分,75分的人数分别是1,3,4,2,2,那么这组数据的众数是 90 分
15.分解因式.
16.某活动小组购买了4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的
12
单价多4元,求篮球的单价和足球的单价.设篮球的单价为元,足球的单价为元,依题意,可列方程组为
17.如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,CD∥AB,∠ABC的平分线BD交AC于点E,DE=.
18.如图,在由10个完全相同的正三角形构成的网格图中,∠α,∠β如图所示,则cos(α+β)=
三.解答题(共8个小题,共78分)
19.(本题满分8分)计算:
解:原式=
20.(本题满分8分)解方程:
解:,经检验是原方程的解.
21.(本题满分8分)如图,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD,BC.求证:(1);(2)AE=CE;
12
证明:(1)如图,连接AC.∵AB=CD,∴,∴,即
(2)∵,∴∠ACD=∠BAC,∴AE=CE
22.(本题满分8分)某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛.
收集数据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩分数如下(单位:分):
90 85 68 92 81 84 95 93 87 89 78 99 89 85 97
88 81 95 86 98 95 93 89 86 84 87 79 85 89 82
整理分析数据:
成绩x(单位:分)
频数(人数)
60≤x<70
1
70≤x<80
80≤x<90
17
90≤x<100
(1) 将图中空缺的部分补充完整;
12
成绩x(单位:分)
频数(人数)
60≤x<70
1
70≤x<80
2
80≤x<90
17
90≤x<100
10
(1) 学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学,根据上面统计结果估计该校初一年级360人中有多少人将获得表彰;
答案:(人),答:约有120人受到表彰
(3)“创文知识竞赛”中收到表彰的小红同学得到印有龚扇,剪纸,彩灯,恐龙图案的四枚纪念奖章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念奖章中,恰好有恐龙图案的概率是
.
答案:
23. (本题满分10分)如图,在平面直角坐标系中,一次函数()的图象与反比例函数的图象相交于第一、三象限内的A(3,5),B(a,-3)两点,与轴交于点C.
(1) 求该反比例函数和一次函数的解析式;
(2) 在y轴上找一点P使PB-PC最大,求PB-PC的最大值及点P的坐标;
(3)直接写出当时,的取值范围
12
答案:
(1)把A(3,5)代入得,∴反比例函数的解析式为
把B(a,-3)代入得;∴B(-5,-3)
把A(3,5),B(-5,-3)代入得,解之得
∴一次函数的解析式为
(2)依题意得,直线AB与y轴交点即为P点,在y=x+2中,令x=0,则y=2,令y=0,则x=-2,∴点P的坐标为(0,2),点C的坐标为(-2,0),此时PB=5,PC=2,∴PB-PC的最大值为3
(3)当时,的取值范围是-5<x<0或x>3
24.(本题满分10分)阅读下列材料:小明为了计算的值,采用以下方法:
设①
则②
②-①得
12
∴
请仿照小明的方法解决以下问题:
(1) ;
(2) ;
(3) 求的和(,是正整数,请写出计算过程).
解:设①
则②
②-①得
∴
25.(本题满分12分)
(1)如图1,E是正方形ABCD边AB上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转90°,旋转后角的两边分别与射线BC交于点F和点G.
12
①线段DB和DG之间的数量关系是DB=DG;
②写出线段BE,BF和DB之间的数量关系.
(2)当四边形ABCD为菱形,∠ADC=60°,点E是菱形ABCD边AB所在直线上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转120°,旋转后角的两边分别与射线BC交于点F和点G.
①如图2,点E在线段AB上时,请探究线段BE、BF和BD之间的数量关系,写出结论并给出证明;
②如图3,点E在线段AB的延长线上时,DE交射线BC于点M,若BE=1,AB=2,直接写出线段GM的长度.
图1 图2 图3
(2)①
理由如下:在菱形ABCD中,∠ABD=∠CBD=∠ABC=30°,由旋转120°可得,∠EDF=∠BDG=120°,∴∠EDF-∠BDF=∠BDG-∠BDF,即∠FDG=∠BDE.
在△DBG中,∠G=180°-∠BDG-∠DBG=30°,∴∠DBG=∠G=30°,∴BD=DG.
在△BDE和△GDF中∴△BDE≌△△GDF(ASA),∴BE=GF
∴BE+BF=BF+GF=BG.
12
过点D作DM⊥BG于点M如图所示:∵BD=DG,∴BG=2BM.在Rt△BMD中,∠DBM=30°,∴BD=2DM,设DM=a,则BD=2a,BM=.∴BG=,∴
∴BF+BE=BD.
②GM的长度为.理由:∵,FC=2DC=4,CM=BC=,∴GM=
26.(本题满分14分)
如图,已知直线AB与抛物线相交于点A(-1,0)和点B(2,3)两点.
(1)求抛物线C函数表达式;
(2)若点M是位于直线AB上方抛物线上的一动点,以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,求此时平行四边形MANB的面积S及点M的坐标;
(3)在抛物线C的对称轴上是否存在定点F,使抛物线C上任意一点P到点F的距离等于到直线的距离,若存在,求出定点F的坐标;若不存在,请说明理由.
12
解:(1)把A(-1,0),B(2,3)代入抛物线得解之得
∴抛物线C的函数表达式为:
(2)∵A(-1,0),B(2,3),∴直线AB的解析式为:,如图所示,过M作MN∥y轴交AB于N,设,则,(-1<m<2)
∴,∴S△ABM=S△AMN+S△BMN=
∴S△ABM=,∴当时,△ABM的面积有最大值,而S□MANB=2S△ABM=,此时
(3)存在,点
理由如下:令抛物线顶点为D,则D(1,4),则顶点D到直线的距离为,设设,设P到直线的距离为PG.则
PG=,∵P为抛物线上任意一点都有PG=PF,∴当P与顶点D重合时,也有PG=PF.此时PG=,即顶点D到直线的距离为
∴PF=DF=,∴,∵PG=PF,∴,
∵
12
∴
整理化简可得,∴当时,无论取任何实数,均有PG=PF
12