天添资源网 http://www.ttzyw.com/
第32讲 正多边形的外接圆
题一: 已知一个圆的半径为5cm,则它的内接正六边形的边长为 .
题二: 已知正六边形的面积为3,则它的外接圆半径为 .
题三: 正六边形的边心距是,则它的边长是 .
题四: 如图,正六边形螺帽的边长是2,这个扳手的开口a的值应是 .
题五: 如图,圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB的度数是 .
题六: 如图所示,正五边形ABCDE的对角线AC和BE相交于点M,求证:
(1)AC∥DE;
(2)ME = AE.
天添资源网 http://www.ttzyw.com/
天添资源网 http://www.ttzyw.com/
第32讲 正多边形的外接圆
题一: 5cm.
详解:如图,连接OA,OB,
∵六边形ABCDEF是正六边形,∴∠AOB =×360° = 60°,
又∵OA = OB,∴△OAB是等边三角形,
∴AB = OA = OB = 5cm,即它的内接六边形的边长为5cm.
题二: .
详解:如图,设正六边形外接圆的半径为r,
∵正六边形的面积为3,
∴S△AOF =×3=,即r•r•sin∠OFA =r2•=,∴r =.
故答案为.
题三: 2.
详解:如图,∵正六边形的边心距为,
∴OB =,AB =OA,
∵OA2 = AB2+OB2,
∴OA2 = (OA)2+()2,解得OA = 2,
则它的边长是2.
天添资源网 http://www.ttzyw.com/
天添资源网 http://www.ttzyw.com/
题四: 2.
详解:连接AC,过B作BD⊥AC于D,
∵AB = BC,
∴△ABC是等腰三角形,
∴AD = CD,
∵此多边形为正六边形,
∴∠ABC =,
∴∠ABD == 60°,
∴∠BAD = 30°,AD = AB•cos30° = 2×=,
∴a = 2.
题五: 72°
详解:∵五边形ABCDE为正五边形,
∴AB = BC = CD,∠ABC = ∠BCD = 108°,
∴∠BAC = ∠BCA = ∠CBD = ∠BDC == 36°,
∴∠APB = ∠DBC+∠ACB = 72°.
题六: 见详解.
详解:(1)∵五边形ABCDE是正五边形,
∴∠ABC = ∠EAB = ∠DCB = ∠DEA =,AB = BC,
∴∠CAB = ∠BCA = 36°,
∴∠EAC = 108°-36° = 72°,
∴∠DEA+∠EAC = 108°+72° = 180°,
∴AC∥DE;
(2)∵五边形ABCDE是正五边形,
天添资源网 http://www.ttzyw.com/
天添资源网 http://www.ttzyw.com/
∴∠ABC = ∠EAB = ∠DCB = ∠DEA =,AE = AB,
∴∠AEB = ∠ABE = 36°,
∵∠EAC = 72°,
∴∠EMA = 180°-36°-72° = 72°,
∴∠EAM = ∠EMA,
∴ME = AE.
天添资源网 http://www.ttzyw.com/