天添资源网 http://www.ttzyw.com/
第一章 算法初步
1.3 算法案例
A级 基础巩固
一、选择题
1.下列说法中正确的个数为( )
①辗转相除法也叫欧几里得算法;
②辗转相除法的基本步骤是用较大的数除以较小的数;
③求最大公约数的方法除辗转相除法之外,没有其他方法;
④编写辗转相除法的程序时,要用到循环语句.
A.1 B.2 C.3 D.4
解析:依据辗转相除法可知,①②④正确,③错误.
答案:C
2.用更相减损术求48和132的最大公约数时,需做减法的次数是( )
A.2 B.3 C.4 D.5
解析:132-48=84,84-48=36,48-36=12,36-12=24,24-12=12.
答案:D
3.若用秦九韶算法求多项式f(x)=4x5-x2+2当x=3时的值,则需要做乘法运算和加减法运算的次数分别为( )
A.4,2 B.5,3 C.5,2 D.6,2
解析:f(x)=4x5-x2+2=((((4x)x)x-1)x)x+2,所以需要做5次乘法运算和2次加减运算.
天添资源网 http://www.ttzyw.com/
天添资源网 http://www.ttzyw.com/
答案:C
4.已知一个k进制的数123与十进制的数38相等,那么k等于( )
A.7或5 B.-7
C.5 D.都不对
解析:(123)(k)=1×k2+2×k+3=k2+2k+3,
所以k2+2k+3=38,即k2+2k-35=0.
解得k=5或k=-7(舍去).
答案:C
5.已知44(k)=36,把67(k)转化为十进制数为( )
A.8 B.55
C.56 D.62
解析:当题意得,36=4×k1+4×k0,所以k=8.
则67(k)=67(8)=6×81+7×80=55.
答案:B
二、填空题
6.用秦九韶算法求f(x)=2x3+x-3当x=3时的值v2=________.
解析:f(x)=((2x+0)x+1)x-3,
v0=2;
v1=2×3+0=6;
v2=6×3+1=19.
答案:19
7.已知函数f(x)=x3-2x2-5x+6,用秦九韶算法,则f(10)=________.
解析:f(x)=x3-2x2-5x+6=(x2-2x-5)x+6=[(x-2)x-5]x
天添资源网 http://www.ttzyw.com/
天添资源网 http://www.ttzyw.com/
+6.
当x=10时,f(10)=[(10-2)×10-5]×10+6=(8×10-5)×10+6=75×10+6=756.
答案:756
8.已知1 0b1(2)=a02(3),则(a,b)=________.
解析:因为1 0b1(2)=1×23+b×2+1=2b+9,
a02(3)=a×32+2=9a+2,
所以2b+9=9a+2,即9a-2b=7.
因为a∈{1,2},b∈{0,1},
所以当a=1时,b=1符合题意,
当a=2时,b=不合题意,
所以a=1,b=1.所以(a,b)=(1,1).
答案:(1,1)
三、解答题
9.分别用辗转相除法和更相减损术求261,319的最大公约数.
解:辗转相除法:
319=261×1+58,
261=58×4+29,
58=29×2.
所以319与261的最大公约数是29.
更相减损术:
319-261=58,
261-58=203,
203-58=145,
天添资源网 http://www.ttzyw.com/
天添资源网 http://www.ttzyw.com/
145-58=87,
87-58=29,
58-29=29,
所以319与261的最大公约数是29.
10.已知函数f(x)=x3-3x2-4x+5,试用秦九韶算法求f(2)的值.
解:根据秦九韶算法,把多项式改写成如下形式:
f(x)=x3-3x2-4x+5=(x2-3x-4)x+5=
((x-3)x-4)x+5.
把x=2代入函数式得
f(2)=((2-3)×2-4)×2+5=-7.
B级 能力提升
1.m是一个正整数,对于两个正整数a,b,如果a-b是m的倍数,则称a,b对模m同余,用符号ab(MOD m)表示,则下列各式中不正确的为( )
A.127(MOD 5) B.2110(MOD 3)
C.3420(MOD 2) D.477(MOD 40)
解析:逐一验证,对于A,12-7=5是5的倍数;对于B,21-10=11不是3的倍数;对于C,34-20=14是2的倍数;对于D,47-7=40是40的倍数.
答案:B
2.324,243,135三个数的最大公约数是________.
解析:324=243×1+81,
243=81×3,
所以243与324的最大公约数是81.
天添资源网 http://www.ttzyw.com/
天添资源网 http://www.ttzyw.com/
又135=81×1+54,
81=54×1+27,
54=27×2+0,
所以135与81的最大公约数是27.
答案:27
3.已知三个数12(16),25(7),33(4),将它们按由小到大的顺序排列为________________.
解析:将三个数都化为十进制数.
12(16)=1×16+2=18,25(7)=2×7+5=19,
33(4)=3×4+3=15,
所以33(4)<12(16)<25(7).
答案:33(4)<12(16)<25(7)
天添资源网 http://www.ttzyw.com/