天添资源网 http://www.ttzyw.com/
课时跟踪检测(二十) 平面向量的正交分解及坐标表示
平面向量的坐标运算
层级一 学业水平达标
1.如果用i,j分别表示x轴和y轴方向上的单位向量,且A(2,3),B(4,2),则可以表示为( )
A.2i+3j B.4i+2j
C.2i-j D.-2i+j
解析:选C 记O为坐标原点,则=2i+3j,=4i+2j,所以=-=2i-j.
2.已知=a,且A,B,又λ=,则λa等于( )
A. B.
C. D.
解析:选A ∵a==-=,
∴λa=a=.
3.已知向量a=(1,2),2a+b=(3,2),则b=( )
A.(1,-2) B.(1,2)
C.(5,6) D.(2,0)
解析:选A b=(3,2)-2a=(3,2)-(2,4)=(1,-2).
4.在平行四边形ABCD中,AC为一条对角线,=(2,4),=(1,3),则=( )
A.(2,4) B.(3,5)
C.(1,1) D.(-1,-1)
解析:选C =-=-=-(-)=(1,1).
5.已知M(-2,7),N(10,-2),点P是线段MN上的点,且=-2,则P点的坐标为( )
A.(-14,16) B.(22,-11)
C.(6,1) D.(2,4)
解析:选D 设P(x,y),则=(10-x,-2-y),=(-2-x,7-y),
由=-2得所以
天添资源网 http://www.ttzyw.com/
天添资源网 http://www.ttzyw.com/
6.(江苏高考)已知向量a=(2,1),b=(1,-2),若ma+nb=(9,-8)(m,n∈R),则m-n的值为________.
解析:∵ma+nb=(2m+n,m-2n)=(9,-8),
∴∴∴m-n=2-5=-3.
答案:-3
7.若A(2,-1),B(4,2),C(1,5),则+2=________.
解析:∵A(2,-1),B(4,2),C(1,5),
∴=(2,3),=(-3,3).
∴+2=(2,3)+2(-3,3)=(2,3)+(-6,6)=(-4,9).
答案:(-4,9)
8.已知O是坐标原点,点A在第二象限,||=6,∠xOA=150°,向量的坐标为________.
解析:设点A(x,y),则x=||cos 150°=6cos 150°=-3,
y=||sin 150°=6sin 150°=3,
即A(-3,3),所以=(-3,3).
答案:(-3,3)
9.已知a=,B点坐标为(1,0),b=(-3,4),c=(-1,1),且a=3b-2c,求点A的坐标.
解:∵b=(-3,4),c=(-1,1),
∴3b-2c=3(-3,4)-2(-1,1)=(-9,12)-(-2,2)=(-7,10),
即a=(-7,10)=.
又B(1,0),设A点坐标为(x,y),
则=(1-x,0-y)=(-7,10),
∴⇒
即A点坐标为(8,-10).
10.已知向量=(4,3),=(-3,-1),点A(-1,-2).
(1)求线段BD的中点M的坐标.
(2)若点P(2,y)满足=λ (λ∈R),求λ与y的值.
解:(1)设B(x1,y1),
天添资源网 http://www.ttzyw.com/
天添资源网 http://www.ttzyw.com/
因为=(4,3),A(-1,-2),
所以(x1+1,y1+2)=(4,3),
所以所以
所以B(3,1).
同理可得D(-4,-3),
设BD的中点M(x2,y2),
则x2==-,y2==-1,
所以M.
(2)由=(3,1)-(2,y)=(1,1-y),
=(-4,-3)-(3,1)=(-7,-4),
又=λ (λ∈R),
所以(1,1-y)=λ(-7,-4)=(-7λ,-4λ),
所以所以
层级二 应试能力达标
1.已知向量=(2,4),=(0,2),则=( )
A.(-2,-2) B.(2,2)
C.(1,1) D.(-1,-1)
解析:选D =(-)=(-2,-2)=(-1,-1),故选D.
2.已知向量a=(1,2),b=(2,3),c=(3,4),且c=λ1a+λ2b,则λ1,λ2的值分别为( )
A.-2,1 B.1,-2
C.2,-1 D.-1,2
解析:选D ∵c=λ1a+λ2b,
∴(3,4)=λ1(1,2)+λ2(2,3)=(λ1+2λ2,2λ1+3λ2),
∴解得λ1=-1,λ2=2.
3.已知四边形ABCD的三个顶点A(0,2),B(-1,-2),C(3,1),且=2,则顶点D的坐标为( )
A. B.
C.(3,2) D.(1,3)
解析:选A 设点D(m,n),则由题意得(4,3)=2(m,n-2)=(2m,2n-4),故解得即点
天添资源网 http://www.ttzyw.com/
天添资源网 http://www.ttzyw.com/
D,故选A.
4.对于任意的两个向量m=(a,b),n=(c,d),规定运算“”为mn=(ac-bd,bc+ad),运算“”为mn=(a+c,b+d).设f=(p,q),若(1,2)f=(5,0),则(1,2)f等于( )
A.(4,0) B.(2,0)
C.(0,2) D.(0,-4)
解析:选B 由(1,2)⊗f=(5,0),得解得所以f=(1,-2),所以(1,2)f=(1,2)(1,-2)=(2,0).
5.已知向量i=(1,0),j=(0,1),对坐标平面内的任一向量a,给出下列四个结论:
①存在唯一的一对实数x,y,使得a=(x,y);
②若x1,x2,y1,y2∈R,a=(x1,y1)≠(x2,y2),则x1≠x2,且y1≠y2;
③若x,y∈R,a=(x,y),且a≠0,则a的起点是原点O;
④若x,y∈R,a≠0,且a的终点坐标是(x,y),则a=(x,y).
其中,正确结论有________个.
解析:由平面向量基本定理,可知①正确;例如,a=(1,0)≠(1,3),但1=1,故②错误;因为向量可以平移,所以a=(x,y)与a的起点是不是原点无关,故③错误;当a的终点坐标是(x,y)时,a=(x,y)是以a的起点是原点为前提的,故④错误.
答案:1
6.已知A(-3,0),B(0,2),O为坐标原点,点C在∠AOB内,|OC|=2,且∠AOC=.设=λ+ (λ∈R),则λ= ________.
解析:过C作CE⊥x轴于点E,
由∠AOC=知,|OE|=|CE|=2,所以=+=λ+,即=λ,所以(-2,0)=λ(-3,0),故λ=.
答案:
7.在△ABC中,已知A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于点F,求的坐标.
解:∵A(7,8),B(3,5),C(4,3),
∴=(3-7,5-8)=(-4,-3),
=(4-7,3-8)=(-3,-5).
∵D是BC的中点,
∴=(+)=(-4-3,-3-5)
天添资源网 http://www.ttzyw.com/
天添资源网 http://www.ttzyw.com/
=(-7,-8)=.
∵M,N分别为AB,AC的中点,∴F为AD的中点.
∴=-=-=-=.
8.在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),
(1)若++=0,求的坐标.
(2)若=m+n (m,n∈R),且点P在函数y=x+1的图象上,求m-n.
解:(1)设点P的坐标为(x,y),
因为++=0,
又++=(1-x,1-y)+(2-x,3-y)+(3-x,2-y)=(6-3x,6-3y).
所以解得
所以点P的坐标为(2,2),
故=(2,2).
(2)设点P的坐标为(x0,y0),因为A(1,1),B(2,3),C(3,2),
所以=(2,3)-(1,1)=(1,2),
=(3,2)-(1,1)=(2,1),
因为=m+n,
所以(x0,y0)=m(1,2)+n(2,1)=(m+2n,2m+n),所以
两式相减得m-n=y0-x0,
又因为点P在函数y=x+1的图象上,
所以y0-x0=1,所以m-n=1.
天添资源网 http://www.ttzyw.com/