天添资源网 http://www.ttzyw.com/
课时跟踪检测(二十一) 平面向量共线的坐标表示
层级一 学业水平达标
1.下列向量组中,能作为表示它们所在平面内所有向量的基底的是( )
A.e1=(0,0),e2=(1,-2)
B.e1=(-1,2),e2=(5,7)
C.e1=(3,5),e2=(6,10)
D.e1=(2,-3),e2=
解析:选B A中向量e1为零向量,∴e1∥e2;C中e1=e2,∴e1∥e2;D中e1=4e2,∴e1∥e2,故选B.
2.已知点A(1,1),B(4,2)和向量a=(2,λ),若a∥,则实数λ的值为( )
A.- B.
C. D.-
解析:选C 根据A,B两点的坐标,可得=(3,1),
∵a∥,∴2×1-3λ=0,解得λ=,故选C.
3.已知A(2,-1),B(3,1),则与平行且方向相反的向量a是( )
A.(2,1) B.(-6,-3)
C.(-1,2) D.(-4,-8)
解析:选D =(1,2),向量(2,1)、(-6,-3)、(-1,2)与(1,2)不平行;(-4,-8)与(1,2)平行且方向相反.
4.已知向量a=(x,2),b=(3,-1),若(a+b)∥(a-2b),则实数x的值为( )
A.-3 B.2
C.4 D.-6
解析:选D 因为(a+b)∥(a-2b),a+b=(x+3,1),a-2b=(x-6,4),所以4(x+3)-(x-6)=0,解得x=-6.
5.设a=,b=,且a∥b,则锐角α为( )
A.30° B.60°
C.45° D.75°
解析:选A ∵a∥b,
∴×-tan α cos α=0,
即sin α=,α=30°.
天添资源网 http://www.ttzyw.com/
天添资源网 http://www.ttzyw.com/
6.已知向量a=(3x-1,4)与b=(1,2)共线,则实数x的值为________.
解析:∵向量a=(3x-1,4)与b=(1,2)共线,
∴2(3x-1)-4×1=0,解得x=1.
答案:1
7.已知A(-1,4),B(x,-2),若C(3,3)在直线AB上,则x=________.
解析:=(x+1,-6),=(4,-1),
∵∥,∴-(x+1)+24=0,∴x=23.
答案:23
8.已知向量a=(1,2),b=(-2,3),若λa+μb与a+b共线,则λ与μ的关系是________.
解析:∵a=(1,2),b=(-2,3),
∴a+b=(1,2)+(-2,3)=(-1,5),
λa+μb=λ(1,2)+μ(-2,3)=(λ-2μ,2λ+3μ),
又∵(λa+μb)∥(a+b),
∴-1×(2λ+3μ)-5(λ-2μ)=0,
∴λ=μ.
答案:λ=μ
9.已知A,B,C三点的坐标为(-1,0),(3,-1),(1,2),并且=,=,求证:∥.
证明:设E,F的坐标分别为(x1,y1)、(x2,y2),
依题意有=(2,2),=(-2,3),=(4,-1).
∵=,∴(x1+1,y1)=(2,2).
∴点E的坐标为.
同理点F的坐标为,=.
又×(-1)-4×=0,∴∥.
10.已知向量a=(2,1),b=(1,1),c=(5,2),m=λb+c(λ为常数).
(1)求a+b;
(2)若a与m平行,求实数λ的值.
解:(1)因为a=(2,1),b=(1,1),
所以a+b=(2,1)+(1,1)=(3,2).
(2)因为b=(1,1),c=(5,2),
所以m=λb+c=λ(1,1)+(5,2)=(λ+5,λ+2).
又因为a=(2,1),且a与m平行,
所以2(λ+2)=λ+5,解得λ=1.
天添资源网 http://www.ttzyw.com/
天添资源网 http://www.ttzyw.com/
层级二 应试能力达标
1.已知平面向量a=(x,1),b=(-x,x2),则向量a+b( )
A.平行于x轴
B.平行于第一、三象限的角平分线
C.平行于y轴
D.平行于第二、四象限的角平分线
解析:选C 因为a+b=(0,1+x2),所以a+b平行于y轴.
2.若A(3,-6),B(-5,2),C(6,y)三点共线,则y=( )
A.13 B.-13
C.9 D.-9
解析:选D A,B,C三点共线,
∴∥,而=(-8,8),=(3,y+6),
∴-8(y+6)-8×3=0,即y=-9.
3.已知向量a=(1,0),b=(0,1),c=ka+b(k∈R),d=a-b,如果c∥d,那么( )
A.k=1且c与d同向
B.k=1且c与d反向
C.k=-1且c与d同向
D.k=-1且c与d反向
解析:选D ∵a=(1,0),b=(0,1),若k=1,则c=a+b=(1,1),d=a-b=(1,-1),显然,c与d不平行,排除A、B.若k=-1,则c=-a+b=(-1,1),d=a-b=-(-1,1),即c∥d且c与d反向.
4.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个顶点的坐标是( )
A.(1,5)或(5,5)
B.(1,5)或(-3,-5)
C.(5,-5)或(-3,-5)
D.(1,5)或(5,-5)或(-3,-5)
解析:选D 设A(-1,0),B(3,0),C(1,-5),第四个顶点为D,
①若这个平行四边形为▱ABCD,
则=,∴D(-3,-5);
②若这个平行四边形为▱ACDB,
则=,∴D(5,-5);
③若这个平行四边形为▱ACBD,
天添资源网 http://www.ttzyw.com/
天添资源网 http://www.ttzyw.com/
则=,∴D(1,5).
综上所述,D点坐标为(1,5)或(5,-5)或(-3,-5).
5.已知=(6,1),=(x,y),=(-2,-3),∥,则x+2y的值为________.
解析:∵=++=(6,1)+(x,y)+(-2,-3)
=(x+4,y-2),
∴=-=-(x+4,y-2)=(-x-4,-y+2).
∵∥,
∴x(-y+2)-(-x-4)y=0,即x+2y=0.
答案:0
6.已知向量=(3,-4),=(6,-3),=(5-m,-3-m).若点A,B,C能构成三角形,则实数m应满足的条件为________.
解析:若点A,B,C能构成三角形,则这三点不共线,即与不共线.
∵=-=(3,1),=-=(2-m,1-m),
∴3(1-m)≠2-m,即m≠.
答案:m≠
7.已知A(1,1),B(3,-1),C(a,b).
(1)若A,B,C三点共线,求a与b之间的数量关系;
(2)若=2,求点C的坐标.
解:(1)若A,B,C三点共线,则与共线.
=(3,-1)-(1,1)=(2,-2),=(a-1,b-1),
∴2(b-1)-(-2)(a-1)=0,∴a+b=2.
(2)若=2,则(a-1,b-1)=(4,-4),
∴∴
∴点C的坐标为(5,-3).
8.如图所示,在四边形ABCD中,已知A(2,6),B(6,4),C(5,0),D(1,0),求直线AC与BD交点P的坐标.
解:设P(x,y),则=(x-1,y),
天添资源网 http://www.ttzyw.com/
天添资源网 http://www.ttzyw.com/
=(5,4),=(-3,6),=(4,0).
由B,P,D三点共线可得==(5λ,4λ).
又∵=-=(5λ-4,4λ),
由于与共线得,(5λ-4)×6+12λ=0.
解得λ=,
∴==,
∴P的坐标为.
天添资源网 http://www.ttzyw.com/