高三数学答案第 1 页 共 5 页(数学是有生命的,题目是有经典的)
2019-2020 学年度第一学期期末学业水平检测高三数学参考答案
一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分。
1 8:D C A B A D C D
二、多项选择题:本大题共 4 小题,每小题 5 分,共 20 分。
9. AD; 10. ACD; 11. AD; 12. BCD;
三、填空题:本大题共 4 个小题,每小题 5 分,共 20 分。
13. 1a ; 14. 2 ; 15. 5 , 270 ; 16. 1 5
2
;
四、解答题:共 70 分。解答应写出文字说明,证明过程或演算步骤。
17.(10 分)
解:(1)由 14 3 4n n na a b 和 14 4 3n n nb a b 相加得:
1 14( ) 4( ) 8n n n na b a b
所以 1 1( ) ( ) 2n n n na b a b ,因此数列{ }n na b 是以 2 为公差的等差数列········· 2 分
又由 14 3 4n n na a b 和 14 4 3n n nb a b 相减得:
1 14( ) 2( )n n n na b a b ,所以 1 1 1
2
n n
n n
a b
a b
,
又 1 1 1 0a b ,因此数列{ }n na b 是以 1
2 为公比的等比数列·····························4 分
(2)由(1)知: 112 1 ( )2
n
n n n na b n a b ,
两式相加得: 1 1( )2 2
n
na n ·······································································6 分
所以
2
1 1[1 ( ) ]( 1) 12 2 1 ( )12 2 2 21 2
n
n
n
n n n nW
··········································· 8 分
因为 1 1( ) 02 2
n
na n ,所以 1n nW W ······················································ 9 分
又因为 4 5
1 27 19 9, 916 2 32W W ,
所以使得 9nW 的 n 的取值范围为 5n ························································· 10 分
18.(12 分)
解:(1)因为 sin sin 2
B Ca B b ,
所以 sin sin( )2 2
Aa B b ,即 sin cos 2
Aa B b , ········································· 1 分
由正弦定理得sin sin sin cos 2A B B A ,························································· 2 分
由于C 为 ABC 的内角,所以sin 0B ,························································3 分
所以sin cos 2A A ,即 2sin cos cos2 2 2
A A A ···················································4 分
由于 B 为 ABC 的内角,∴ cos 02
A ,高三数学答案第 2 页 共 5 页(数学是有生命的,题目是有经典的)
所以 1sin 2 2
A ·····························································································5 分
又因为 (0, )A ,所以
2 6
A ,
3A ;·······················································6 分
(2)在 ABC 中由余弦定理知:
2 2 2 2 2 22 cos ( ) 3 ( ) 3( )2
b ca b c bc A b c bc b c ····························· 9 分
所以 1a ,等号当仅当 1b c 时等号成立····················································11 分
此时
4
3sin2
1 AbcS ············································································· 12 分
19.(12 分)
解: (1)因为平面 //GHF 平面 ABED ,
平面 BCFE 平面 ABED BE
平面 BCFE 平面GHF HF
所以 //BE HF ········································· 2 分
因为 //BC EF ,
所以四边形 BHFE 为平行四边形
所以 BH EF
因为 2BC EF
所以 2BC BH , H 为 BC 的中点··············3 分
同理G 为 AC 的中点
所以 //GH AB
因为 AB BC ,所以 GH BC ················ 4 分
又 //HC EF 且 HC EF ,所以四边形 EFCH 是平行四边形,所以 //CF HE ,
又CF BC ,所以 HE BC .······································································ 5 分
又 ,HE GH 平面 EGH , HE GH H ,所以 BC 平面 EGH ,
又 BC 平面 BCFE ,所以平面 BCFE 平面 EGH ·········································6 分
(2)由(1)知, ,HE HB HG HB
因为 AB CF , //CF HE , //GH AB ,所以 HE HG
分别以 , ,HG HB HE 所在的直线为 x 轴, y 轴, z 轴,建立如图所示的空间直角坐标系 H xyz ,
则 (2,1,0), (0,1,0), (1,0,1), (0, 1,0)A B D C ························································7 分
设平面 ABD 的一个法向量为 1 1 1( , , )m x y z
,
因为 ( 2,0,0), (1, 1,1)AB BD
则 1
1 1 1
2 0
0
m AB x
m BD x y z
,取 1 1y ,得 (0,1,1)m
···································· 9 分
设平面 ADC 的一个法向量为 2 2 2( , , )n x y z
,
因为 ( 1, 1,1), ( 2, 2,0)AD AC
则 2 2 2
2 2
0
2 2 0
n AD x y z
n AC x y
,取 2 1x ,得 (1, 1,0)n
······························· 11 分
所以 1cos , 2| | | |
m nm n
m n
,
则二面角 B AD C 的大小为
3
·································································· 12 分
F
C
B
A
D
E
G
H
x
y
z高三数学答案第 3 页 共 5 页(数学是有生命的,题目是有经典的)
20.(12 分)
解:(1)设甲公司与乙公司的月薪分别为随机变量 X ,Y ,
则 ( ) 6000 0.4 7000 0.3 8000 0.2 9000 0.1 7000E X ,
( ) 5000 0.4 7000 0.3 9000 0.2 11000 0. 1 7000E Y ,
2 2( ) (6000 7000) 0.4 (7000 7000 ) 0.3 (8000 7000) 0. 2D X )
2 2(9000 7000) 0.1 1000 ﹣ ,
2 2 2( ) (5000 7000) 0.4 (7000 7000) 0.3 (9000 7000) 0. 2D Y 2 2(11000 7000) 0.1 2000 ,
则 ( ) ( )E X E Y , ( ) ( )D X D Y ,································································ 4 分
我希望不同职位的月薪差距小一些,故选择甲公司;
或我希望不同职位的月薪差距大一些,故选择乙公司;
(只要言之有理即给 2 分)·············································································6 分
(2)因为 1 5.5513 5.024k = ,根据表中对应值,
得出“选择意愿与年龄有关系”的结论犯错的概率的上限是 0.025,························· 7 分
由数据分布可得选择意愿与性别两个分类变量的 2 2 列联表如下:
选择甲公司 选择乙公司 总计
男 250 350 600
女 200 200 400
总计 450 550 1000
计算
2
2 1000 (250 200 350 200) 2000 6.734600 400 450 550 297K ,且 2 6.734 6.635K = ,
对照临界值表得出结论“选择意愿与性别有关”的犯错误的概率上限为 0.01,
由 0.01 0.025 ,所以与年龄相比,选择意愿与性别关联性更大.······················· 12 分
21.(12 分)
解:(1)由题意知, 1( ) cos 1f x x x x
, ( 1, )x ································ 1 分
当 )0,1(x 时, 1( ) 1 01f x x xx
, ( )f x 在 )0,1( 上单调递减············· 2 分
当 ,0x 时,令 ( ) ( )h x f x ,
因为 2 2
1 1( ) 1 sin 0(1 ) (1 )h x xx x
所以 ( )h x 在 (0, ) 上单调递增, ( ) (0) 0h x h
所以当 ,0x 时, ( ) 0f x , ( )f x 在 (0, ) 上单调递增·····························4 分
所以 min( ) (0) 0f x f ,即 ( ) (0) 0f x f ··················································· 5 分
(2)(ⅰ)由(1)知, ( )f x 在 1(0, )2 上单调递增
因为 81 8ln 2 ln ln 2 0e
所以 1 1 1 1 1 1 1( ) ( ) sin ln 2 sin ln 2 (1 8ln 2)2 2 8 6 8 2 8 2f x f ,······· 7 分
又因为 )2
1,0(1 a ,所以 )2
1,0()( 12 afa ,
1 2 1
1( ) ( ( )) ( ( ( ) )) (0, )2n n na f a f f a f f f a ······························· 8 分高三数学答案第 4 页 共 5 页(数学是有生命的,题目是有经典的)
(ⅱ)函数 )2
10()()( xxxfxg ,则
xxxxfxg
1
11cos1)()(
令 )()( xgx ,则 0)1(
1sin1)( 2
xxx ,所以 ( )x 在 )2
1,0( 上单调递增;
因此 1 1 1 2 1 7( ) ( ) ( ) cos 1 cos 02 2 2 3 2 6g x x
所以 )(xg 在 )2
1,0( 上单调递减·······································································11 分
所以 0)0()( gxg ,因此 0)()(1 nnnnn agaafaa
所以 *Nn , 1n na a ··············································································12 分
22.(12分)
解:(1)设椭圆C 焦距为 2c ,
因为椭圆C 的短轴长和焦距相等,所以b c , 2 2 2 22a b c b ①······················ 1分
因为 1 2| | | | 2QF QF a ,所以点Q 在椭圆C 上
将 2(1, )2Q 代入
2 2
2 2 1x y
a b
得: 2 2
1 1 12a b
②················································2分
由①②解得: 2 22, 1a b
所以,椭圆C 的方程为
2
2 12
x y ···································································3分
(2)由题意 2 (1,0)F ,则可设直线l 的方程为: ( 1)y k x
由 2
2
( 1)
12
y k x
x y
得: 0224)21( 2222 kxkxk ········································· 4 分
设 1 1( , )A x y , 2 2( , )B x y ,则
2
1 2 2
4
1 2
kx x k
,
2
1 2 2
2 2
1 2
kx x k
又因为 2 22AF F B
,所以 1 1 2 2(1 , ) 2( 1, )x y x y , 1 22 3x x
所以
2 2
1 22 2
2 3 2 3,1 2 1 2
k kx xk k
·······································································5 分
所以
2 2 4 2
1 2 2 2 2 2 2
2 3 2 3 4 9 2 2
1 2 1 2 (1 2 ) 1 2
k k k kx x k k k k
··········································· 6 分
解得: 14
2k
所以直线 l 的方程为: 14 14
2 2y x 或 14 14
2 2y x ····························· 7 分
(3)由题意直线l 的斜率存在,设直线l 的方程为: y kx m
由 2
2 12
y kx m
x y
得: 2 2 2(1 2 ) 4 2 2 0k x kmx m ········································ 8 分
设 3 3( , )A x y , 4 4( , )B x y ,则 3 4 2
4
1 2
kmx x k
因为直线l 与曲线 lny x 相切于点 ( ,ln )( 0)T t t t
所以 1|x tk y t , ln 1m t 高三数学答案第 5 页 共 5 页(数学是有生命的,题目是有经典的)
所以 3 4 2
4 (1 ln ) 4
2 3
t tx x t
,整理得 2ln 1 03 3
tt t
···································9 分
令 2( ) ln 1( 0)3 3
tf t t tt
,所以
2
2 2
1 2 1 3 2( ) 3 3 3
t tf t t t t
因为 2( ) 3 2g t t t 在 (0, ) 上单调递增;且 1 1( ) 0, (1) 2 02 4g g
所以,存在 1( 1)2
使得 ( ) 0g ··························································10 分
因此 ( )f t 在 (0, ) 上单调递减,在 ( , ) 上单调递增;所以 ( ) ( )f t f ··········· 11 分
又因为 (1) 0f ,所以 ( ) ( ), ( ) 0f t f f , 1 3( ) ln 2 1 ln 2 02 2f ,
因此 ( )f t 除零点 1t 外,在 1( , )2
上还有一个零点
所以,符合题意的点T 有两个,其中一个的坐标为 (1,0)T ·································· 12 分