书书书
【!"#$%(& 1')】 【!"#$%(& 2')】
!
"
#
$
%
&
'
(
)
*
(
+
*
,
-
*
.
/
0
1
2
3
4
5
2020!"#$%&'()*+,-./
()*+,-./0 &120
!"#$(%)
&'():
1.304,)56789:;?)@ABCD32EF.
2.G3HI2J,HKLM23NO,PQRS32ETU2V;3NWAXY.Z[\],P^_
`abO,cHXde3NWA.G3fHI2J,83NCD32EF.CDgh0Fij.
3.)hklO,8gh0>32E%mnG.
%、*+,:-,. 12/,,0/, 51,. 601.20/,34567*)8,9:%);?
@5.
1.opqr A={x|x(2-x)≥0},B={x|x>1},s A∩B=
A.{x|x≥2} B.{x|1<x≤2}
C.{x|x≤1} D.{x|0<x≤1}
2.opt# z=(6+5i)(1-2i),sDtuvw,t# zxTU;yz{
A.&%|} B.&~|}
C.&|} D.&|}
3.op k∈Z,s k>0# f(x)=(k+1)·x2k+1D(-!,+!)F
;
A.7 B.7
C. D.7
4.9F;,qm! 2018L ¡、¢£¤¥u¦y§
¨(z:©ª);#«,¬®v;¯°±:
! " # $ % & ' ( ) !* !! !" !"
%%
%*
$%
$*
#%
#*
"%
"*
!%
!*
%
*
#$%!&'
(
)
"!
$*
##
$!
#"
"(
#)
!&
!#
%
"*
"!
$%
$& $)
!#
"*!'
!$
!*
!!
"$
$*
$$
²«³¯°±,®´kµ¶·;
A.¡u¦;y§¨¸{¢u¦;y§¨
B.¹ ¡u¦y§¨;ºz# 28
C.¹ ¢u¦y§¨;»¼ 38
D.8 ½¡、¢£¤u¦;y§¨¾¼¿À
5.op SnÁ¼#´{an};4 nÂ>,a4=19,a2+a8=46,s a10=
A.35 B.39 C.43 D.47
6.ÃÄ°x2
a2 -y2
b2 =1(a>0,b>0);ÅÆÇ槡3,ÈÉÊ 4,sËÌ
槡 槡 槡 槡A.6 B.26 C.3 D.23
7.《ÍÎÏÐ》ºÑZ®Ò2:“ÓÑÔÕÖ×%Ø%Ù,ÚÖ%,ÛÖ~,ÜÖ.ÝÞg×.Ò:Ô
¹ßàá.”¸â:“ÓÑ 3ãÔ%äå 1001ÙæÎ.MÔLå 1Ù,ÛÔå 2Ù,Ôå 4Ù.Òå
çèéæÎJ,3ãÔ¹åÀê?”ëMÔåÀêÙì,íîZ®xï;ðñò±,só
K; k;ô
!"
!!""#!#""$
#$ !
%&
#!#%&
!!!'$
'
(
#!"(
A.141 B.142 C.143 D.144
8.õö C:x2
a2 +y2
b2 =1(a>b>0);÷、øËyù F1,F2,ú |F1F2|=2,ûõö C;ÅÆÇ 1
2,ü F2
;ý°þõön{ A,B£y,s△F1AB;ÿÊ
A.2 B.4 C.6 D.8
9.(x+1
x+2)3!"#;xÑ#($%#Â);&#>
A.68 B.42 C.48 D.54
10.op# f(x)= ex-1,x≤0,
x2-2x,x{ >0,g(x)=f(x)-a,û g(x)'D 3¤(;)y,s a;*ô+,
A.(-1,0) B.[0,+!)
C.(-!,-1] D.(-!,-1]∪[0,+!)
!
"
#
$
!!
"!
%
&
&!11.Z±xï,- 槡163;¶./ ABC-A1B1C1 º,AA1 =4,B1C∩BC1 =O,E∈uv
AA1B1B,F∈uv AA1C1C,s△OEF;ÿÊ;¿Mô
A.4 B.6
C.8 D.12
12.0# f(x)=emx(x2-1)-2
memx;»Mô A,û A<0,ú m<0,s1# m;*ô+
,
A.(-∞,-e) B.(-∞,-4) C.(-∞,-2) D.(-∞,-1)
A、BC,:-,. 4/,,0/, 51,. 201.
13.op2¨ a=(1,1),b=(-5,2),c=2a+b,s aD c32F;45 .
14.í¶ÂÁ6#´ a{ }n ;4 nÂ> Sn,ú an
an+1
>1,û a3+a5=20,a2a6=64,s S5= .
15.Dý789 ABCDº,AB=AD=1,BC=2,AD∥BC,AB⊥AD,E AD;ºy,: BD8△ABD¯ä,;
uv ABD⊥uv BCD,sÑ?,@
A ω;*ô¤# .【!"#$%(& 3')】 【!"#$%(& 4')】
!
"
#
$
%
&
'
(
D、EF,:. 701.EFGH4IJKL、MLNOPQRST.U 17~21,VWX,,07Y,XZ
[W\]F.U 22、23,V*X,,XZ^_?@]F.
(%)WX,:. 601.
17.(gM2B 12)
op△ABCº,7 A,B,CxT;Cù a,b,c,ú cosA=3
4,4(a2+c2)=4b2+ac.
(1)ë@:B=2A;
(2)û ab=12,ë c;ô.
18.(gM2B 12)
DE8F,¹GHPIJ;;PKLMNyO, 6 ½P½¹PQ;PI,RSTU
VWX* 1000=PQ;PI,xY#«Z®xï:
PI¨(L) [0,100) [100,200) [200,300) [300,400) [400,500) [500,600]
PQ# 100 200 300 240 120 40
(1)²«FZº;#«,ç[®´\Ç]ý3±;
!"#$!%
!"" #"" $"" %"" &"" '""
&'
()"(""$#
"(""#)
"(""#%
"(""#"
"(""!'
"(""!#
"(""")
"("""%
"
(2)ëNX^; 1000=PQ 6 PI¨;u_#;
(3)û`abXc;3d,DPI¨[300,400)>[400,500);NX^PQºVWX* 6T,cD
è 6TºVWX* 2T^>;PI#,ëeÑ 1T;PI¨D[400,500);fÇ.
19.(gM2B 12)
!
"
#
$
%
&
DZ±xï;Àvº,C9 ABCDCÊ 2;g9,∠BAD=60°,DM⊥uv
ABCD,AN∥DM,DM=2,AN=1.
(1)@h:AC∥uv BMN;
(2)ëý° MCþuv BMNx=7;¶iô.
20.(gM2B 12)
j° C:x2=py(p>0);Ëy F(0,1),ý° l;kl7 αúÐüy F,ý° lþj° Cn{
£y A,B.
(1)û|AB|=16,ë7 α;
(2)ùü A,Bmj° C;n° l1,l2,0ý° l1,l2 ;ny E,ý° EF;kl7 β.hoS
|α-β|pqô,mrh!s.
21.(gM2B 12)
op# f(x)=a
x+lnx(a∈R),f(x);t# f′(x).
(1)û h(x)=f(x)+f′(x)+1
x(2,+!)F;#,ë a;*ô+,;
(2)í g(x)=|(a-1)x|+f(x),x∈[1,+!),ë@:g(x)≥1.
(A)*X,:. 101.`XZ2U 22、23,8a*%,]F.bcde,fghe5U%,i1.
22.(gM2B 10)【Hu 4-4:vW&þw#3ð】
opý° l;w#3ð x=t,
y=-1+{ bt(tw#),DxvWyy O»y,xÉ;¶zÉ»É;»
vW&º,Ä° C;3ð 2sinθ-ρcos2θ=0.
(1)ëÄ° C;ý7vW3ð;
(2)ûý° lþÄ° C¾n,ë b;ô.
23.(gM2B 10)【Hu 4-5:Á#H{】
op# f(x)=|x-m|+|x-4|(m<4).
(1)ûÁ# f(x)≥4;q{x|x≤ 1
2| x≥ 9
2},ë m;ô.
(2)ûTx∈R,f(x)+|x-4|≥1}=~,ë1# m;*ô+,.【!"#$~(& 5')】 【!"#$~(& 6')】
!
"
#
$
%
&
'
(
)
*
(
+
*
,
-
*
.
/
0
1
2
3
4
5
2020!"#$%&'()*+,-./
()*+,-./0 &120
!"#$(A)
&'():
1.304,)56789:;?)@ABCD32EF.
2.G3HI2J,HKLM23NO,PQRS32ETU2V;3NWAXY.Z[\],P^_
`abO,cHXde3NWA.G3fHI2J,83NCD32EF.CDgh0Fij.
3.)hklO,8gh0>32E%mnG.
%、*+,:-,. 12/,,0/, 51,. 601.20/,34567*)8,9:%);?
@5.
1.opqr A={0,1,2},qr B={x∈Z|x2-3x<0},s A∩B=
A.{1,2} B.{0,2} C.{0,1} D.{1}
2.ût# z1,z2DtuvwTU;y{1ÉT,ú z2=1+i,s 5z2
z1+1=
A.1+i B.5-2i C.2-i D.1+3i
3.û2¨ a=(2,3),b=(-1,2),s a·(a-2b)=
A.5 B.6 C.7 D.8
4.&%¤
,î9 2011xL;,dº 2018î
; 1 8 ;,îkZ±xï.²«±9,®´¤º,;
!"#$ !%$! !"$& !%$' !%$( !%#) !%#* !"$+ !"
"
$""
!""
'""
)""
+""
$"""
!#$%!&'"
A. 2012ä, B.2017;D 2016;F%
C.½#þ=¶¾ D.s± 2014äÊ
5.op SnÁ¼#´{an};4 nÂ>,a3+a7=28,S11=187,s a20=
A.53 B.59 C.56 D.62
6.opÃÄ° C1:y2
m2- x2
m2+3=1þ C2:x2
3-y2
2=1;¡¢°¾(,sÄ° C1;3ð
A.y2
6-x2
9=1 B.y2
9-x2
6=1 C.y2
3-x2
6=1 D.y2
4-x2
7=1
7.¡、¢、£、¤、¥、: 6Tw A、B、C¦§;¨©,dº¡、¢、£ãª= A¦§,¤、¥、:(Jª=
A、B、C¤¦§,û褦§Mã¨%=©=U,sxÑ;3N;G#
A.18 B.20 C.24 D.36
8.# f(x)=x2+alnx;±|D x=1«;n°üy(0,2),s a=
A.2 B.-2 C.3 D.-3
9.op P(π
12,1),Q(5π
12,-1)ù# f(x)=sin(ωx+φ)(ω>0,|φ|<π
2)±|F¾¬;¿(y>¿
y,s ωφ=
A.π
2 B.-π
2 C.3π
4 D.-3π
4
10.®¯°±,²³´±,µ¶·¸P¹µpº»¼½D(¾¿xÀh,ÁÂÃKÄÅ、Æ、ÇÈ、
ÉÊ、ËÌÁ±N.®¯°±s®¯Í±Î=%¤¸¶39(Z± 1),dºWA 2,3,4,5;M±_
ÁÏý779,± 2P®¯°±ÃK; 20195ÐÑ;±N,s5ÐѱNºÒ*%y,³
yeÓ*9Ô5º;fÇ
!"
!#$
%
&&&'
(
&)&*
"
+
& *
)#
! & ! #
A.5
9 B.2
3 C.4
9 D.1
2
11.Z±öÕ;Ö±,A,BöÕZvF£yD¶Ö±º;z×,dº BxDCºy,sD³ö
ÕØvF A,B£y¿Ù;ÚÛÊL
! !
"! "
槡 槡 槡A.5 B.6 C.3 D.3
12.op#´{an}BÜ a1=1
3,an+1= an
4an+1,s#´{anan+1};4 10Â> S10=
A.8
105 B.1
13 C.10
129 D.11
141
A、BC,:-,. 4/,,0/, 51,. 201.
13.op# f(x)qÝD RF;Þ#,ú f(x)=
6-2x,x≤ -1,
x2+7,-1<x≤0{ ,
s f(1
2)+f(2)= .
14.opߨ x,yBÜ
x+3y-4≥0
3x+y-4≤0
x≥{ 0
,s y
x+1;¿Mô .
15..Õ S-ABCº,SA,SB,SC££àý,ú SA=3,SB=4,SC=5,dáyMDâ O;âvF,sâ O
;Zv- .
16.opj° y2=8x;Ëy F,?°þ xÉ;ny M,Nj°F;%y,úBÜ 2 NF =
MN ,sy Fý° MN;ÌÅ .【!"#$~(& 7')】 【!"#$~(& 8')】
!
"
#
$
%
&
'
(
D、EF,:. 701.EFGH4IJKL、MLNOPQRST.U 17~21,VWX,,07Y,XZ
[W\]F.U 22、23,V*X,,XZ^_?@]F.
(%)WX,:. 601.
17.(gM2B 12)
D△ABCº,7 A,B,C;TCù a,b,c,ú c+槡3
3asinB=bcosA.
(1)ë7 B;
(2)û b=14,△ABC;v- 槡153,ë△ABC;ÿÊ.
18.(gM2B 12)
%ãäåæçT"è 4GéA;ã䓯%”êëìíþåæ¨î¿;&ïðñRSm
ò0ó,YZ®ôõ:
ö÷ & 1 & 2 & 3 & 4
êëìí x(Øø) 10 11 13 12
åæ¨ y(ù) 22 24 31 27
úPûy±p x,y>Ñ°?¾&.
(1)ëK y{ x;°?Gü3ð ^y=^bx+^a;
(2)û& 5êëìí 8.5Øø,ýî& 5;åæ¨ y(ù);ô.
w)#:^b=
∑
n
i=1
(xi-珋x)(yi-珋y)
∑
n
i=1
(xi-珋x)2
=
∑
n
i=1
xiyi-n珋x珋y
∑
n
i=1
x2
i-n珋x2
,^a=珋y-^b珋x
19.(gM2B 12)
!
"#
$
%
$!opuðC9 ABCDº,∠BAD=135°,DA=4,DC 槡=2 2,E°þ AD;ºy,
ÿ: ECïð¯,;Y Dþ E′!r,YZ±xï;.Õ E′-ABCE.
(1)@h:CE⊥uv AEE′;
(2)û△AEE′ÁC79,ëuv AEE′>uv E′BCx=;"~v7;#
iô.
20.(gM2B 12)
íõö C:x2
a2 +y2
b2 =1(a>b>0);øËy F,xyy OöÆ,ÙzÉÊzÛ;öeÓÐüõö
C;£Ëy,ú³ö$ý° x+y-1=0xY;iÊ槡2.
(1)ëõö C;W?3ð;
(2)üqy P(2,0);ý°nõö C{£y A、B,õöF;y MBÜ →OA+→OB= →OM,hë△OAB;
v-.
21.(gM2B 12)
op# f(x)=(x2-ax+1)ex,g(x)=(x+1)e-x-1.
(1)û# f(x)Ñ%¶%%£¤»ôy,ë1# a;+,;
(2)& 0≤a≤2J,@h:Tx1,x2∈R,f(x1)≥g(x2).
(A)*X,:. 101.`XZ2U 22、23,8a*%,]F.bcde,fghe5U%,i1.
22.(gM2B 10)【Hu 4-4:vW&þw#3ð】
Duvý7vW&º,opý° lü M(1,0)úkl75π
6,xvWyy»y,x xÉ;¶zÉ»
É'~»vW&,Ä° C;»vW3ð ρ=4cosθ
2sinθ
2.
(1)8Ä° C;»vW3ð(ý7vW3ð;
(2)opý° lþÄ° Cn{ P,Q,ë 1
|MP|+ 1
|MQ|.
23.(gM2B 10)【Hu 4-5:Á#H{】
op# f(x)=|2x+1|.
(1)ëÁ# f(x)+f(x-1)>3;q;
(2)ûTÒâ x∈R,Á# f(x)+f(x+3)>a2+5a}=~,ë1# a;*ô+,.【!"#$(& 9')】 【!"#$(&10')】
!
"
#
$
%
&
'
(
)
*
(
+
*
,
-
*
.
/
0
1
2
3
4
5
2020!"#$%&'()*+,-./
()*+,-./0 &120
!"#$(D)
&'():
1.304,)56789:;?)@ABCD32EF.
2.G3HI2J,HKLM23NO,PQRS32ETU2V;3NWAXY.Z[\],P^_
`abO,cHXde3NWA.G3fHI2J,83NCD32EF.CDgh0Fij.
3.)hklO,8gh0>32E%mnG.
%、*+,:-,. 12/,,0/, 51,. 601.20/,34567*)8,9:%);?
@5.
1.íqr A={1,2,3},B={x|x2-2x+m=0},û A∩B={2},s B=
A.{0} B.{2} C.{1} D.{0,2}
2.2(2-i)
1-i =
A.-3-i B.3-i C.3+i D.-3+i
3.op¹Â_¶#;Á6#´ a{ }n º,a2=1,a4a6=64,s6 q=
槡A.4 B.3 C.2 D.2
4.op cosα=-4
5,α∈(-π,0),s tan(α-π
4)=
A.-1
7 B.7 C.1
7 D.-7
5.í a,b)¿£ý°,s“a,buð”“a,b ln3,sóK M;ô
!"
!"#!$!"
#!$#
#$ !
%&
'
#( #%$
!"#!$$"
)
A.2 B.1 C.-1 D.0
8.û# f(x)=2sin(2x+φ)(|φ|<π
2);±|2÷u+ π
12¤zÊLO{ yÉT,s# f(x)D
¿[0,π
2]F;¿Mô
槡A.- 3 B.-1
槡C.1 D.3
9.opÁ¼#´ a{ }n ;4 nÂ> Sn,Sm-1=16,Sm =25,Sm+2=49(m≥2,m∈N),s m;ô
A.6 B.7
C.4 D.5
10.# f(x)=e x -2|x|-1;±|¸,
!"
!
"
#
#"
$%
"
$"
$!
"
%"
$!
"
11.Z±,CÊ 2;¶39 ABCDº,E,Fù BC,CD;ºy,ÿD: AE,AF- EFS褶39¯
=%¤v,; B,C,Dy!r,!rO;y0 P,sv P-AEF.v AEFF;(
! "
#$
%
&
A.1
3 B.2
3
C.3
4 D.1
12.®´¤/2:① 槡ln5<5ln2;②lnπ> π
槡e;③2槡11 <11;④2槡3 <3,dº+/2;¤#(e90T#;
.#)
A.1 B.2
C.3 D.4
A、BC,:-,. 4/,,0/, 51,. 201.
13.x(x-2)5!"#º; x4Â;&# .
14.op1# x,yBÜ°?1l
x≥1
x+y≥0
x-y+2≥{ 0
,s z=2x+y;¿Mô .
15.Z±,op ABö C;%i,ú →AB· →AC=2,s|→AB|= .
!"
#
16.op2° C:y2=2x;Ëy F,üy Fùm£ý° l1,l2,ý° l1þj° Cn{ A、B£y,ý
° l2þj° Cn{ D、E£y,û l1 þ l2 ; l Ç ; u 3 > 2,s |AB|+|DE|; ¿ M ô
.【!"#$(&11')】 【!"#$(&12')】
!
"
#
$
%
&
'
(
D、EF,:. 701.EFGH4IJKL、MLNOPQRST.U 17~21,VWX,,07Y,XZ
[W\]F.U 22、23,V*X,,XZ^_?@]F.
(%)WX,:. 601.
17.(gM2B 12)
D△ABCº,cosA=槡2
10,tanB=4
3.
(1)ë7 C;
(2)û →BA· →BC=21,ë AC;Ê.
18.(gM2B 12)
^W3T4$5ò%¤p(â5Û5“~6”Xc^,³^W3³4VWX^
100=$5,^îe7(â5Û5“~6”89T5Û5“~6”,ÿoYp 100Tº(â5
Û5“~6”: 60%,îZZ:
(â (â rî
;5 a 5
p(â5Û5“~6”þ?ùÑ??r
h!s;
(2)8F@^xY;\ÇÖfÇ,ÿDxÑ$5º,APVWXc;3dX* 4z$5ïðÊ
÷BC^,0NX*; 4z$5ºD“(â”EL;T# X,ë X;]´-#$÷F.
G:K2= n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
P(k2≥k0) 0.15 0.100 0.050 0.025 0.010
k0 2.072 2.706 3.841 5.024 6.635
19.(gM2B 12)
!
"
#
$
%
&
'
Z±,D.Õ P-ABCDº,PA⊥.v ABCD,∠BADý7,AB∥CD,AD=CD
=2AB,E、Fù PC、CD;ºy.
(1)@h:uv APD∥uv BEF;
(2)í PA=kAB(k>0),ú~v7 E-BD-C;uv7¸{ 60°,ë k;*ô+,.
20.(gM2B 12)
õöÊÉøHy A,Fáy M,OõöºÆ,Fõö;øËy,ú →MF· →FA 槡= 2-1,ÅÆÇ
槡2
2.
(1)ëõö;W?3ð;
(2)ý° lnõö{ P,Q£y,p'Dý° l,;y Fe△PQM;àÆ?û'D,ëKý° l
;3ð;û'D,?rh!s.
21.(gM2B 12)
op# f(x)=lnx-ex+a.
(1)ûÄ° f(x)Dy(1,f(1))«;n°þ xɶzÉÑÕy,ë a;*ô+,;
(2)ë@:a>1-1
eJ,f(x)<-e-1.
(A)*X,:. 101.`XZ2U 22、23,8a*%,]F.bcde,fghe5U%,i1.
22.(gM2B 10)【Hu 4-4:vW&þw#3ð】
Dý7vW& xOyº,ý° l;w#3ð:x=1+tcosφ
y=1+tsin{ φ
(tw#,φ∈[0,π)),xvWyy»
y,x xÉ;¶zÉ»É,'~»vW&,ö C;»vW3ð:ρ=4cos(θ-π
3).
(1)ëö C;ý7vW3ð;
(2)íy P(1,1),ûý° lþö Cn{ A,B£y,ë|PA||PB|;ô.
23.(gM2B 10)【Hu 4-5:Á#H{】
í# f(x)=|x|,g(x)=|2x-2|.
(1)Á# f(x)>g(x);
(2)û 2f(x)+g(x)>ax+1TÒâ x∈R}=~,ë1# a;*ô+,.【!"#$(&13')】 【!"#$(&14')】
!
"
#
$
%
&
'
(
)
*
(
+
*
,
-
*
.
/
0
1
2
3
4
5
2020!"#$%&'()*+,-./
()*+,-./0 &120
!"#$(6)
&'():
1.304,)56789:;?)@ABCD32EF.
2.G3HI2J,HKLM23NO,PQRS32ETU2V;3NWAXY.Z[\],P^_
`abO,cHXde3NWA.G3fHI2J,83NCD32EF.CDgh0Fij.
3.)hklO,8gh0>32E%mnG.
%、*+,:-,. 12/,,0/, 51,. 601.20/,34567*)8,9:%);?
@5.
1.íqr A={x|x2-x-6≥0},qr B={0,1,2,3,4},s A∩B=
A.{4} B.{3,4}
C.{2,3,4} D.{0,1,2,3,4}
2.opt# z1,zBÜ z1=-1-i,z1z=4,st# zDtuvwTUy;vW
A.(2,-2) B.(-2,2) C.(2,2) D.(-2,-2)
3.Z±.v¶39、%Ø.àý{.v;.Õ;Ö±,@A³.Õ;ýI±®´¹±
º;
!"# $%&
'"&
!"#$ !"#$ !"#$ !"#$
!" #" $" %"
4.ÃÄ°x2
a2 -y2
b2 =1(a>0,b>0);%¡¢°3ð y=3
4x,sÃÄ°;ÅÆÇ
A.5
4 B.4
3 C.5
3 D.4
5
5.op7 αD&~|},û cosα=- 槡22
3 ,scos2(α
2+π
4)=
A.2
3 B.1
2 C.1
3 D.0
6.op(x+1)n;!"#;¹Â&#> 32,s!"#º x4;&#
A.20 B.15 C.10 D.5
!
"
#$
%
&7.ºJKL;#$HMNOPÀÿmUPQRq!,Sú8ThTQRq!ïð@h.
JJ÷UJ#$HVWX%Y“VWi±”,P#9kr;3d,ZKQRq
!;[\@h.D“VWi±”º,xiCÊY;¶39s 4¤Á;ý779c
Fº¿;@¤¶39Î=.Z±,¶39 ABCD¸]`“VWi±”íî^í;_
±`.op 4¤ý779;£ý7Cù a=30cm,b=40cm.ûMaDèÍ_±`FÒá
z×;Wb_Á;.s³MaDº¿M¶39º;fÇ
A.1
25 B.1
12 C.6
25 D.24
25
8.# f(x)=(x+1
x)cosxD[-3,0)∪(0,3];±|¸,
!
"!"
#
$ "#
!
"%"
$
$ "#
!
"!"
$
$ "#
!
"!"
$
$ "#
&' () *) +)
9.8# y=sin(2x-π
6);±|2÷u+ π
6¤zÊL,xY±|TU;#
A.D¿[-π
6,π
6]F
B.D¿[-π
6,π
6]F
c
C.D¿[0,π
3]F
D.D¿[0,π
3]F
c
10.D△ABCº,7 A,B,C;TCù a,b,c,ú a=3,A=π
3,sinC=2sinB,s△ABC;ÿÊ
槡 槡 槡 槡A.3+23 B.3+26 C.3+33 D.3+36
11.Z±,D¶3 ABCD-A1B1C1D1º,y O°þ BD;ºy,íy PD°þ CC1 F,ý° OPþuv
A1BDx=;7 α,s sinα;*ô+,
!
"
"!
!!
#
$
%
%!
$!
&
A.[槡3
3,1] B.[槡6
3,1]
C.[槡6
3,槡22
3 ] D.[ 槡22
3 ,1]
12.op# f(x)=2lnx-1(1
e<x<e2),g(x)=mx,û f(x)þ g(x);±|F'D{ý° y=0T
;y,s1# m;*ô+,
A.[-2
e,2e) B.(-e-2,3e]
C.[-2e-3
2,3e) D.(-3e-2,3e]
A、BC,:-,. 4/,,0/, 51,. 201.
13.op a,b_z2¨,û|a-2b 槡|= 3,s aþ b;d7 .
14.op1# x,yBÜ
x-y≥0
x+2y-6≤0
x-3y≤{ 0
,s z=y+2
x+1;¿¸ô .
15.op# f(x)=
1+log2(2-x),x<1
2x-1,x≥{ 1
,s f(-2)+f(log23)= .
16.op Fj° x2=4y;Ëy,Pj°F;]y,úy A;vW(0,-1),s槡2|PA|+|PF|
|PF| ;
¿¸ô .【!"#$(&15')】 【!"#$(&16')】
!
"
#
$
%
&
'
(
D、EF,:. 701.EFGH4IJKL、MLNOPQRST.U 17~21,VWX,,07Y,XZ
[W\]F.U 22、23,V*X,,XZ^_?@]F.
(%)WX,:. 601.
17.(gM2B 12)
¼ d);Á¼#´{an};4 nÂ> Sn,û S3=9,ú a1,a2,a5=Á6#´.
(1)ë#´{an};eÂ#;
(2)í{bn-an}f 1,6 2;Á6#´,ë#´{bn};eÂ#-d4 nÂ> Tn.
18.(gM2B 12)
g'IÖ¦êh\i;êhjklV———《mn24o》{ 2005 6 Xp,Vwq
r,9#
Àc,sV;tuD{"À>vwx;、Ñy;4z|H{|}~ÂV,m¿¸}L_úPIÖ
þ8x;~m=I;IÖV.¢ö《mn24o》VÎp%¤Õѯ;
V,ãÑeü¯
ÂYì,q4ûÑkl,O£ûÑcZ%ª
;"24;Wb(O£ÕãÑ%ªWb),opT4Leü;fÇM 2
3,
O£Leü;fÇM 1
2.
(1)ë³TYì;fÇ;
(2)í³Teü;# X,ëVWߨ X;]´-#$÷F.
19.(gM2B 12)
!"
#
$
%
&
'
(Z±xï,D.Õ A-BCDº,△ABDþ△BCDMCÊ 2;ÁC79,E
Ø. AB;ºy,üy Emuð{ AC、BD;uvùn. AD、CD、BC{y F、
G、H.
(1)@h:C9 EFGH9;
(2)ûuv ABD⊥uv BCD,ë~v7 A-EH-F;#iô.
20.(gM2B 12)
íõö C:x2
a2 +y2
b2 =1(a>b>0);øËy F,øáy A,opõöÅÆÇ 1
2,üy Fúþ xÉà
ý;ý°Nõö$Y;°þÊ 3.
(1)ëõö C;3ð;
(2)íüy A;ý° lþõö Cn{y B(BD xÉF),àý{ l;ý°þ ln{y M,þ yÉn{
y H,û BF⊥HF,ú∠MOA≤∠MAO(OvWyy),ëý° llÇ;*ô+,.
21.(gM2B 12)
op# f(x)= ex
x2-mx+1.
(1)û m∈(-2,2),ë# y=f(x);¿;
(2)û m∈(0,1
2],s& x∈[1,m+1]J,0 f(x);¿Mô M,g(x)=x;¿¸ô N, Mþ N
;¸M&,mCKüð.
(A)*X,:. 101.`XZ2U 22、23,8a*%,]F.bcde,fghe5U%,i1.
22.(gM2B 10)【Hu 4-4:vW&þw#3ð】
D»vW&º,Ä° C;»vW3ð ρ=2cosθ+2sinθ(0≤θ<2π),y M(1,π
2),x»y Oy
y,x»É xÉ;¶zÉ'~uvý7vW&,opý° l:
x=槡3
2t
y=1+1
2{ t
(tw#)þÄ° Cn{ A,
B£y.
(1)û P(ρ,θ)Ä° CFÒâ%y,ë ρ;¿¸ô,mëKJy P;»vW;
(2)ë 1
|MA|+ 1
|MB|;ô.
23.(gM2B 10)【Hu 4-5:Á#H{】
í# f(x)=|x-a2|+|x+b2|(a,b∈R).
(1)û a=1,b=0,ë f(x)≥2;q;
(2)û f(x);¿Mô 8,ë a+b;¿¸ô.【!"#$¯(&17')】 【!"#$¯(&18')】
!
"
#
$
%
&
'
(
)
*
(
+
*
,
-
*
.
/
0
1
2
3
4
5
2020!"#$%&'()*+,-./
()*+,-./0 &120
!"#$(j)
&'():
1.304,)56789:;?)@ABCD32EF.
2.G3HI2J,HKLM23NO,PQRS32ETU2V;3NWAXY.Z[\],P^_
`abO,cHXde3NWA.G3fHI2J,83NCD32EF.CDgh0Fij.
3.)hklO,8gh0>32E%mnG.
%、*+,:-,. 12/,,0/, 51,. 601.20/,34567*)8,9:%);?
@5.
1.opqr A={-1,0,1,2},B={x|(x+1)(x-2)<0},s A∩B=
A.{0,1} B.{-1,0} C.{-1,0,1} D.{0,1,2}
2.í z=1-i
i +2i,s|z|=
槡 槡A. 10 B.2 C.2 D.1
3.ûy P(-3,4)7 α;CF%y,s sin2α=
A.-24
25 B.-7
25 C.16
25 D.8
5
4.%º¹ ½;、K;îZ±xï,®´rdº¶·;
!! " # $ % & ' ( ) !*!!!"
"#$!%&
'(!%&""#
(*
'*
&*
%*
$*
#*
"*
!*
#
)*
A.K¿(ôþK¿ô;6 81
B.4F 6 ½;u_ 50©ø
C.ú¿(; ½ 2 ½
D.2F 3 ½;;ß(¨þ 11F 12 ½;;ß(¨¾(
5.û|a|=1,|b|=2,|a+2b 槡|= 13,s aþ b;d7
A.π
6 B.π
3 C.π
2 D.2π
3
6.#$v]#$!µÀ!;¸].1927¹J¸$;$5)K%¤:T{L
%¤¶#,ZÁ#,TÁ 3c 1;ZÁÞ#,TÁ¡x 2.èc¢£,¿kMÂY
1.Z±²«)íî;%¤ðñò±,sóK; i
!" !
#$
%&
'(
"!"#!!#
"!$"%#
" &)*&
"! "
'
!!!%#
"!#&
&
+
A.5 B.6 C.7 D.8
7.®´/2;
A.D(%ý°F;y·q%¤uv
B.££¾núÕy;ý°·q%¤uv
C.Z£¤uvàý,@Adº%¤uvw;ý°%qàý{¤%¤uv
D.Z£¤uvuð,@Adº%¤uvw;ý°%quð{¤%¤uv
8.op# f(x)=sin(ωx+φ)(ω>0,|φ|<π
2)±|¾¬£TÉ;ÌÅ 2π,8# y=f(x);±
|2÷u+ π
3¤zO,Y;±|{ yÉT,s# y=f(x);±|
A.{ý° x=2π
3T B.{ý° x=-2π
3T
C.{y(2π
3,0)T D.{y(-2π
3,0)T
9.û a=4
3e
3
5,b=3
2e
2
3,c=5e-2,s
A.a>b>c B.b>a>c
C.b>c>a D.a>c>b
10.op# f(x)=2ef′(e)lnx-x
e(e90T#;.#),s f(x);»¸ô
A.2e-1 B.-1
e
C.1 D.2ln2
11.D△ABCº,7 A、B、C;TCù a、b、c,Z a、b、c=Á¼#´,B=30°,△ABC;v- 3
2,s b
Á{
槡 槡A.1+ 3 B.2+ 3
C. 槡1+ 3
2 D. 槡2+ 3
2
12.í F2ÃÄ° C:x2
a2 -y2
b2 =1(a>0,b>0);øËy,OvWyy,ü F2 ;ý°nÃÄ°;ø{
y P,N,ý° POnÃÄ° C{¤%y M,û |MF2|=3|PF2|,ú∠MF2N=60°,sÃÄ° C;ÅÆ
Ç
A.3 B.2
C.槡7
2 D.槡5
2
A、BC,:-,. 4/,,0/, 51,. 201.
13.(槡x-3)7
;!"#º x3;&# .
14.ûߨ x,yBÜ1l
2x-y+1≥0
3x+2y-23≤0
y-1≥{ 0
,s z=2y-x;¿¸ô .
15.《¥¦Ï§》º8.vÊ39,úÑ%Ø.þ.vàý;.Õ©”.ÿÑ%“¨©”,
d¶Ö±>ØÖ±Z±xï;ý779.û³“¨©”;áyMD(%¤âvF,ú³â;Zv
- 24π,s³“¨©”;- .
!
"
!"#
#
$"%
16.opj° y2=2px(p>0);Ëy F(1,0),ý° l:y=x+mþj°n{(;£y A,B,û 0≤m
<1,s△FAB;v-;¿¸ô .【!"#$¯(&19')】 【!"#$¯(&20')】
!
"
#
$
%
&
'
(
D、EF,:. 701.EFGH4IJKL、MLNOPQRST.U 17~21,VWX,,07Y,XZ
[W\]F.U 22、23,V*X,,XZ^_?@]F.
(%)WX,:. 601.
17.(gM2B 12)
¶ÂÁ6#´{an}º,û 2a1+3a2=1,a2
3=9a2a6.
(1)ë#´{an};eÂ#;
(2)í bn=log3a1+log3a2+log3a3+… +log3an,ë#´{1
bn
};4 nÂ> Sn.
18.(gM2B 12)
2018 12 28ö,=ª«Ú"e*¬,;À¤®ºï]äJL,¯J(«,èTv]:
°Ð°¦b±²³À!>Ñ!âÝ.Dh*ð÷¿,«i´îµD=M>ª¶£·î¿"e(
¸´ä,¹íLº 7:00-8:00,8:00-9:00£¤J¿þw¹À%»´äsª¶=M(£äÀä
¼5½),ª¶ÀäJ¿-dfÇZZxï:
&%»´ä &~»´ä
ÀäJ¿ 7:10 7:30 7:50 8:10 8:30 8:50
fÇ 0.2 0.3 0.5 0.2 0.3 0.5
ûM¾、M¿~TÀÏ ]䪶=M~Á,¹íe7ª¶ÃäÄÅä;J¿ùÿÆ
7:00>7:20(ã)ÇÅäJ¿,)ÇdÁÈÉ).
(1)ëM¾Åä 10ÊúM¿Åä 30Ê;fÇ;
(2)íM¿Åäx[J¿VWߨ X,ë X;]´>#$÷F E(X).
19.(gM2B 12)
Z±(1),D¯C9 BCDAEº,CD∥AB,∠BCD=90°,CD=BC=1,AB=2,△ABEx ABlC;
ÁÏý779,ÿ8△ABE: AB¯ä,;uv ABE⊥uv ABCD,Z±(2),0°þ AB;ºy O.
!"
#$ %
&
! "
'
(
$
%
&
(1)ë@:uv ABE⊥uv EOD;
(2)ëuv ECDþuv ABEx=;"~v7;¸M.
20.(gM2B 12)
Duvý7vW& xOyº,opqy A(-2,0)、B(2,0),M]y,úý° MAþý° MB;lÇî
- -1
4,í]y M;ËÌÄ° C.
(1)ëÄ° C;3ð;
(2)üqy T(-1,0);]ý° lþÄ° Cn{ P,Q£y,û S(-17
8,0),@h:→SP· →SQqô.
21.(gM2B 12)
í# f(x)=lnx-ex+ax-a(a∈R).
(1)& a=e-1J,ë# f(x);»ô;
(2)û{ x;3ð f(x)=0ÑÍ% x0,ú x0∈(n,n+1),n∈N ,ë n;ô.
(A)*X,:. 101.`XZ2U 22、23,8a*%,]F.bcde,fghe5U%,i1.
22.(gM2B 10)【Hu 4-4:vW&þw#3ð】
Dý7 v W & xOyº,Ä ° C; w # 3 ð x=2cosθ
y=4sin{ θ(θ w #),ý ° l; w # 3 ð
x=1+tcosα
y=2+tsin{ α(tw#).
(1)ë C> l;ý7vW3ð;
(2)ûÄ° C$ý° lxY°þ;ºyvW(1,2),ë l;lÇ.
23.(gM2B 10)【Hu 4-5:Á#H{】
í# f(x)=|x+1|+3|x-a|.
(1)& a=1J,Á# f(x)≤2x+2;
(2)û{ x;Á# f(x)≥4+|2x-2a|}=~,ë1# a;*ô+,.【!"#$Æ(&21')】 【!"#$Æ(&22')】
!
"
#
$
%
&
'
(
)
*
(
+
*
,
-
*
.
/
0
1
2
3
4
5
2020!"#$%&'()*+,-./
()*+,-./0 &120
!"#$(k)
&'():
1.304,)56789:;?)@ABCD32EF.
2.G3HI2J,HKLM23NO,PQRS32ETU2V;3NWAXY.Z[\],P^_
`abO,cHXde3NWA.G3fHI2J,83NCD32EF.CDgh0Fij.
3.)hklO,8gh0>32E%mnG.
%、*+,:-,. 12/,,0/, 51,. 601.20/,34567*)8,9:%);?
@5.
1.opqr A={0,1},B={0,1,2},sBÜ A∪C=B;qr C;¤#
A.4 B.3 C.2 D.1
2.op iÈ#z,t# z=2i+9-3i
1+i,s|z|=
槡A.2+35 B.槡202
2 C.5 D.25
3.8¡、¢£¤ÎâÏ 106Ð;Y#«!=Z±xï;Ѽ±,s±p
! "
# # $ $
# % &
'
(
#
!
$
) $
) ! #
# # #
' )
! "A.¡ÏY;# 3
B.¡、¢£ÏYD[30,39)#þ\ǾÁ
C.¡、¢£ÏY;»¼¾Á
D.¢ÏY;ºz# 38.5
4.%¤Ò뼄 4¤Óâ,2¤Ôâ,ûºÒ* 2¤â,sè 2¤âºÑÔâ;fÇ
A.1
3 B.4
5 C.3
5 D.2
5
5.opËyD xÉF;ÃÄ°;¡¢°3ð 2x±y=0,s³ÃÄ°;ÅÆÇ
槡 槡 槡A.6 B.5 C.2 D.3
6.op a{ }n ¶ÂÁ6#´,ú a1a8=4a5,a4þ 2a6;Á¼ºÂ 18,s a5=
A.2 B.4 C.8 D.16
7.û l,m£(;ý°,màý{uv α,s“l⊥m”“l//α”;
A.7 B.7
C. D.7
8.Y# y=sin(2x+π
4);±|,x8# y=cos(π
6-2x);±|
A.2øu+ π
24¤z B.2÷u+ π
24¤z
C.2øu+ π
12¤z D.2÷u+ π
12¤z
9.D89 ABCDº,∠ABC=π
2,AD//BC,BC=2AD=2AB=2.889 ABCDÕ ADxD;ý°Ö×%ÿ
S9=;Ävx,=;àá;Zv-
!
"
#
$
A.4π B.( 槡4+ 2)π C.6π D.( 槡5+ 2)π
10.û# f(x)=槡3
3x3+lnx-x,sÄ° y=f(x)Dy(1,f(1))«;n°;kl7
A.π
6 B.π
3 C.2π
3 D.5π
6
11.DCÊ 4;g9 ABCDº,∠A=60°,M CD;ºy,Nuv ABCDw%y,û |→AB-→NB|=|→AM
-→AN|,s →AM· →AN=
A.16 B.14 C.12 D.8
12.opj° C:y2=4x;Ëy F,üy FúlÇ 1;ý°þj° Cn{ A、B£y,ûDx°þ
ABýÛ;öF'D£y M、N,Dý° l:x+y+a=0F'D%y Q,;Y∠MQN=90°,s1# a;
*ô+,
A.[-13,3] B.[-3,1] C.[-3,13] D.[-13,13]
A、BC,:-,. 4/,,0/, 51,. 201.
13.~Â#(x-1
3
槡x
)4;!"#º%#Â .
14.op¶# m,nBÜ 2m+n=1,slog2mn;¿¸ô .
15.op# f(x)=
2-x+1,x≤0
-槡x,x{ >0
,s f(x+1)-9≤0;q .
16.í#´ a{ }n BÜ a1=1,a2=4,a3=9,an=an-1+an-2-an-3(n∈N ,n≥4),s a2018= .
D、EF,:. 701.EFGH4IJKL、MLNOPQRST.U 17~21,VWX,,07Y,XZ
[W\]F.U 22、23,V*X,,XZ^_?@]F.
(%)WX,:. 601.
17.(gM2B 12)
º$RS$5;ØÉÙþÚÛÜÝÞJ¿;&,T³4 200=($5;ÚÛÜÝÞ
u_Lº*];J¿ïð^,ZZ:(u_LºÝÞ;J¿z:Ê)
u_LºÝÞ;J¿(Ê) [0,10) [10,20) [20,30) [30,40) [40,50) [50,60)
T# 20 36 44 50 40 10
8$5ö_ÚÛÜ*]J¿D[40,60)F;$5ßà“ÚÛÜÂW”.
(1)?²«F@Záº;î#«BC®v 2×2´âZ,meüîÏpÂDã;fÇ
äü 0.01;4®>“ÚÛÜÂW”þ?ùÑ?
ÚÛÜÂW ÚÛÜÂW rî
;
< 20 110
rî【!"#$Æ(&23')】 【!"#$Æ(&24')】
!
"
#
$
%
&
'
(
(2)8F@^xY;\ÇÖfÇ,ÿD³4($5º,X* 3=$5,0NX*; 3=$5
º;“ÚÛÜÂW”$5T# X,ûLªX*;k¾¼å~;,ë X=2J;fÇ P(X=
2)- X;#$÷F.
w)#:k2= n(ad-bc)2
(a+b)(c+d)(a+c)(b+d),dº n=a+b+c+d.
w)#«:
P(K2≥k0) 0.10 0.05 0.025 0.010 0.005 0.001
k0 2.706 3.841 5.024 6.635 7.879 10.828
18.(gM2B 12)
D△ABCº,7 A,B,CxT;Cù a,b,c,op a=6,cosA=1
8.
(1)û b=5,ë sinC;ô;
(2)û△ABC;v- 槡157
4 ,ë b+c;ô.
19.(gM2B 12)
!
"
#
$
%
&
'Z±,D.Õ P-ABCDº,.S ABCDg9,ú PA=AD=2,∠PAD=∠BAD
=120°,E,Fù PD,BD;ºy,ú EF=槡6
2.
(1)ë@:uv PAD⊥uv ABCD;
(2)ë"~v7 E-AC-D;#iô.
20.(gM2B 12)
op AËÌ 槡25;õö E:x2
a2 +y2
b2 =1(a>b>0);øáy,y P(0,槡23),ý° PAnõö E{y B,
→PB=→BA.
(1)ëõö E;3ð;
(2)íüy PúlÇ k;ý° lþõö En{ M、N£y(MD P、Nî¿),ûC9 MNAB;v-
△PMBv-; 5æ.ëý° l;lÇ k.
21.(gM2B 12)
op# f(x)=ex-1
2(x-a)2+4.
(1)û f(x)D(-!,+!)F
,ë a;*ô+,;
(2)û x≥0,Á# f(x)≥0}=~,ë a;*ô+,.
(A)*X,:. 101.`XZ2U 22、23,8a*%,]F.bcde,fghe5U%,i1.
22.(gM2B 10)【Hu 4-4:vW&þw#3ð】
opö O1>ö O2;»vW3ðù ρ=4> ρ=4sinθ,Ä° θ=π
6(ρ>0)ùnö O1>ö O2{
A、B£y,x»y Oyy,»É xɶzÉ'~ý7vW&.
(1)8ö O1>ö O2;»vW3ð(ý7vW3ð;
(2)opy CDö O2F,ë79 ABCv-*¿¸ôJ,y C;ý7vW.
23.(gM2B 10)【Hu 4-5:Á#H{】
op# f(x)=-|x-a|+a+2,g(x)=|x-1|+|2x+4|.
(1)Á# g(x)<6;
(2)û'D x1、x2∈R,;Y f(x1)=g(x2)=~,ë1# a;*ô+,.书书书
!"#$[% 1 &]
2020!"#$%&'()*+,-./
'()*+,-./ &01/
!"#$%&'(
!"
1.【23】B
【45】67 A={x|x(2-x)≥0}={x|0≤x≤2},B={x|x>1},89 A∩B={x|1<x≤2}.:
; B.
2.【23】D
【45】?@ABC,@# z8DEF
G7(16,-7),HI%JKL,:; D.
3.【23】A
【45】k>0M,N# f(x)?(-!,+!)OPQN#,RS,f(x)?(-!,+!)OPQN#,TU
V k>0,W k=0M,f(x)?(-!,+!)OPQN#,:; A.
4.【23】C
【45】XYZ[\]^、_A`FGabcd7 301、341,:;e Afg;\]hi^A`Ga
bFjH#P20+28
2 =24,:;e Bfg;\]hi_A`GabFkl7 49-11=38,:;e
Cmn;7io^、_pqA`FGabrl7 32,8iorl 30,:;e Dfg.:; C.
5.【23】C
【45】s1[,a2+a8=2a5=46,a5=23,>tl d=23-19=4,a10=a5+5d=23+5×4=43,:
; C.
6.【23】B
【45】F kF
7 143,:; C.
8.【23】D
【45】67|F1F2|=2,89 F2 F7(1,0),vF7 1
2,89 a=2.:△F1ABF
7 4a=8.
9.【23】B
【45】67(x+1
x+2)3 =(槡x+1
槡x
)6( x>0),89Fe7 Cr
6(槡x)6-r(1
槡x
)r=
Cr
6x
6-r
2 x-r
2 =Cr
6x3-r,Z[ r=0,1,2,3M,w,#7 C0
6+C1
6+C2
6+C3
6 =1+6+15+20
=42.!"#$[% 2 &]
10.【23】D
【45】N# f(x)=
ex-1,x≤0,
x2-2x,x{ >0
FK,67 g(x)? 3qFG,89 y=f(x)
FK ¡ y=a? 3qFt¢G,89 aF£
¤¥P(-!,-1]∪[0,+!).
11.【23】B
【45】V=槡3
4×AB2 槡×4=163,4w AB=4, O¦I§B ABB1A1 ACC1A1FD¨Gcd7
Q,R,©ª QR,> E,F,Q,R¢¡M,△OEFF«¬.sI?m® ABC-A1B1C1 j,
G OP BC1 B1CF¯G,89G OP§B BCC1B1 Fj,:△OEF«¬M,E,Fcd
7§B ABB1A1 ACC1A1Fj,89△OEF«¬
7 6,:; B.
12.【23】C
【45】 a? c¿ÀOFÁÂPa·c
c = -3+4
(-3)2+4槡 2
=1
5.
14.【23】124
【45】s
a3+a5=20,
a2a6=64{ , w
a3+a5=20,
a3a5=64{ ,4w
a3=16,
a5{ =4Ã
a3=4,
a5=16{ .67 an
an+1
>1,89 an >an+1,
u#Ä a{ }n 7ÅÆ#Ä,:
a3=16,
a5=4{ .ÇÈ#Ä a{ }n FtÈ7 q,> q2=a5
a3
=1
4.67#Ä7m!"#$[% 3 &]
e#Ä,: q=1
2,É» a1=64,89 an=a1qn-1=64×(1
2)
n-1
,S5=
64×[1-(1
2)5]
1-1
2
=124.
15.【23】90°
【45】ÏB ¡ BE CDÐ90°Ñ.
16.【23】3
【45】f(x)=2sin(ωx+φ)F«¬mÒ7 T=2π
ω,» f(π
4)=2,f(π)=0,89 π-π
4=2n-1
4
T=2n-1
2ω π,u ω=4n-2
3 ,n∈N .v67 f(x)?(π
4,π
3)OÓVÔÕÖ,89 π
3-π
4≤ T
2=π
ω,
4w 0<ω≤12,É» ωZ9£ 2,6,10,¢ 3q.
17.4:(1)a2+c2-b2
2ac =1
8=cosB,
cos2A=2cos2A-1=2×(3
4)2-1=1
8=cosB,
67 B,2A∈(0,π),: B=2A.(5c)
(2) PQ∥DM,v AN∥DM,89 PQ∥AN,(2c)
67 PQ=1
2DM=1,AN=1,
89JòË PQANPAyJòË,> AQ∥PN,(3c)
67 PNAB BMN,AQAB BMN,
89 AQ∥AB BMN,u AC∥AB BMN.(4c)
(2)£ ADFjG O,©ª BO,> BO⊥AD,ów BO 槡= 3,
67 DM⊥AB ABCD,89AB ADMN⊥AB ABCD,
89 BO⊥AB ADMN.(5c)
!
"
#
$
%
&
'
(
)
*
+
,
ôõW8ÞFöâ Ñ,> O(0,0,0),B(槡3,0,0),C(槡3,2,0),M(0,
1,2),N(0,-1,1).(6c)
89 →MB=(槡3,-1,-2),→MN=(0,-2,-1),→MC=(槡3,1,-2).(7c)
AB BMNF}q÷Àb7 m=(x,y,z),
>
→MB·m=0
→MN·m{ =0
,u 槡3x-y-2z=0
-2y-z{ =0
,(9c)
£ y=-1,w x 槡= 3,z=2,89 m=(槡3,-1,2).(10c)
¡ MCAB BMN8ÐÑ7 θ,
> sinθ=|cos〈→MC,m〉|=|→MC·m|
|→MC||m|
=|3-1-4|
槡8·槡8
=1
4.(12c)
20.4:(1)søù¡ x2=py(p>0)FúG7 F(0,1),Zw p=4,(1c)
89øù¡ CF¿{7 x2=4y.
¡ lF¿{7 y=kx+1(k=tanα),ûü x2=4y,ýþ x,
w y2-(2+4k2)y+1=0, A(x1,y1),B(x2,y2),> y1+y2=2+4k2,(3c)
89|AB|=y1+y2+p
2=2+4k2+2=16,(4c)
w k2=3,k 槡=± 3,89 tanα 槡=± 3,> α=π
3Ã α=2π
3.(5c)
(2) ¡ l¿{7 y=kx+p
4(k=tanα),A(x1,x2
1
p),B(x2,x2
2
p),(6c)
ÿ ¡ lF¿{ y=kx+p
4ûü x2=py,ýþ y,w x2-pkx-p2
4=0,!"#$[% 5 &]
> x1+x2=pk①,x1x2=-p2
4②.(7c)
s y=x2
pß!,w y′=2
px,
89 ¡ l1,l2F"cd7 k1=2x1
p,k2=2x2
p,(8c)
> l1,l2F¿{cd7 y=2x1
px-x2
1
p③,y=2x2
px-x2
2
p④,(9c)
4③、④ÛÐF¿{Û,#³①、②,w x=pk
2,y=-p
4,u E(pk
2,-p
4),(10c)
67 F(0,p
4),89 kEF =
-p
4-p
4
pk
2
=-1
k,89 kEF·k=-1,89 EF⊥l.(11c)
89|α-β|=90°7$
.(12c)
21.4:(1)f(x)=a
x+lnx,f′(x)=-a
x2 +1
x,(1c)
> h(x)=f(x)+f′(x)+1
x=-a
x2 +a
x+2
x+lnx,(2c)
h′(x)=2a
x3 -a
x2 -2
x2 +1
x=x2-2x+2a-ax
x3 =(x-a)(x-2)
x3 ,(3c)
g′(x)≥0,89 g(x)?[1,+∞)OÔÕÅQ,
89 g(x)≥g(1)=1.(6c)
a>1M,g(x)=(a-1)x+a
x+lnx,
g′(x)=(a-1)-a
x2 +1
x=(a-1)x2+x-a
x2 ,
° g′(x)=0,u(a-1)x2+x-a=0,w x=1Ã x= a
1-a<0,(7c)
> x≥1M,g′(x)≥0,89 g(x)?[1,+∞)OÔÕÅQ,
89 g(x)≥g(1)=a-1+a=2a-1≥1.(8c)
a<1M,g(x)=(1-a)x+a
x+lnx,
g′(x)=(1-a)-a
x2 +1
x=(1-a)x2+x-a
x2 ,
67 x≥1,a<1,89 g′(x)>0,89 g(x)?[1,+∞)OÔÕÅQ,
89 g(x)≥g(1)=1-a+a=1.(11c)
¼O, x∈[1,+∞)M,g(x)≥1.(12c)!"#$[% 6 &]
22.4:(1)67 2sinθ-ρcos2θ=0,
89 2ρsinθ-ρ2cos2θ=0,(2c)
ûü
ρsinθ=y,
ρcosθ=x{ ,w 2y-x2=0,u x2=2y.
:&¡ CF Ñ¿{P x2=2y.(5c)
(2)s
x=t,
y=-1+bt{ ,w y=-1+bx,(6c)
'õ
y=-1+bx,
x2=2y{ ,
ýþ y,w x2-2bx+2=0,(8c)
w Δ=(-2b)2-4×2=0,4w b 槡=± 2.(10c)
23.4:(1)s1=
f(1
2)=4
f(9
2){ =4
,
u
|1
2-m|+7
2=4
|9
2-m|+1
2{ =4
,
4w m=1.(5c)
(2)Ç f(x)+|x-4|≥1%Ðõ,u|x-m|+|x-4|≥ -|x-4|+1%Ðõ,
sKZ[ f(x)=|x-m|+|x-4|? x=4(£w«¬
4-m,(8c)
» -|x-4|+1? x=4(£w«º
1,: 4-m≥1,w m≤3.(10c)!"#$[% 7 &]
!#
1.【23】A
【45】67 B={x∈Z|0<x<3}={1,2},v A={0,1,2},89 A∩B={1,2}.:; A.
2.【23】D
【45】∵z2=1+i,z1=1-i,: 5z2
z1+1=5+5i
2-i=1+3i.
3.【23】A
【45】∵Àb a=(2,3),b=(-1,2),∴a-2b=(2,3)-(-2,4)=(4,-1),∴a·(a-2b)
=8-3=5,:; A.
4.【23】B
【45】ÉËZ9),É 2012]Í,]*+ü,]Q-,PmnF;]o#]*+üÐmr
¦,PmnF;É 2014]Í]*+üQ-.,PmnF;2017]F]*+üÈ 2016]Q-/
40001,2±V3}4,89;e BPfgF.
5.【23】B
【45】s1[,
a3+a7=2a1+8d=28
S11=11a1+d
2{ ×11×10=187
,4w
a1=2
d{ =3
,89 a20 =2+(20-1)×3 =59,:
; B.
6.【23】A
【45】C2F56¡¿{7 y=±槡6
3x,C1F56¡¿{7 y=± m槡 2
m2槡 +3
x,u 2
3= m2
m2+3,∴m2=6.
7.【23】C
【45】7 A89?^、_、:áj;}á,>8VF¶·7 C1
3A2
3=18é;7 A89?^、_、
:áj;}á,>8VF¶·7 A3
3=6é,:8VF¿3V 24é,:; C.
8.【23】D
【45】f′(x)=2x+a
x, x=1M,;G7(1,1)," k=f′(1)=2+a,89;¡¿{7 y-1
=(2+a)(x-1),67;¡Â?cjF
3Ps 1jF@7 4,5,15,3,13ÛÐF,êj@7 4 5F3ÛÐ}qò7 2F!"#$[% 8 &]
m¿Ë,êB=7 4;@7 15F3ZA77 4、B7 2F¿ËB=}C,uB=7 4;
@7 3FÑËB=7 1
2×4×2=4;@7 13F3ZA77 4,B7 2F¿ËB=}
C,uB=7 4,89>Â?cB=7 S>Â =4×4=16.sDEïFFïtw8ßï7 P
=S>Â
S =16
36=4
9.:; C.
11.【23】A
【45】sAZ[ A,B?G¹BFHHW,GFIBCJ7 r=1,'7 h 槡= 3,K¡ l
=2,G§BÑ72πr
l =π,:§B7C.?jZß A,BpG«L
FMJÙ7槡5,:; A.
!
!""
#
$
%!
&
'
$
%
12.【23】C
【45】67 an+1= an
4an+1,89 1
an+1
-1
an
=4,89#Ä{1
an
}PNe7 3、tl7 4FÇl#Ä,
89 1
an
=4n-1,89 an= 1
4n-1,89 anan+1 = 1
(4n-1)(4n+3) =1
4( 1
4n-1- 1
4n+3),89
S10=1
4(1
3-1
7)+1
4(1
7-1
11)+… +1
4(1
39-1
43)=10
129,:; C.
13.【23】69
4
【45】f(1
2)+f(2)=f(-1
2)+f(-2)=(-1
2)2+7+6-2×(-2)=69
4.
14.【23】1
2
!
"
#
$
%
&
!!"&#$
"!!&#$
'
【45】 Ç Û ¹ Þ F A B O P,W j > Â ? c 8 Þ,ê j
A(0,4
3),B(1,1),C(0,4), y
x+1¹ÞG(x,y)$G D(-1,0)©¡F"
, ¡"«¬7 1-0
1-(-1)=1
2.
15.【23】50π
【45】s SA,SB,SCppQ ,'R¿S,T׿SUªV J7êSDÑ¡ZwV
J7 槡 槡9+16+25= 50,∴SV =4π×50
4=50π.
16.【23】 槡23!"#$[% 9 &]
【45】søù¡ y2 =8x,Zw MF =4,G NW¡FÜ7 d.søù¡$XZw d=
NF ,672 NF = MN ,s1=w cos∠NMF= d
MN = NF
MN =1
2,89 sin∠NMF=
1-(1
2)槡 2 =槡3
2.89G F MNFÜ7 MF sin∠NMF=4×槡3
2 槡=23.
17.4:(1)s c+槡3
3asinB=bcosAYmZ$!Zw sinC+槡3
3sinAsinB=sinBcosA,
u sin(A+B)+槡3
3sinAsinB=sinBcosA,(3c)
!w sinA(cosB+槡3
3sinB)=0,
67 0<A<π,sinA≠0,89 cosB+槡3
3sinB=0,tanB 槡=- 3,B=2π
3.(6c)
(2)s B=2π
3Y△ABCFB=7 槡153,w 1
2acsin2π
3 槡=153,89 ac=60.
s B=2π
3,b=14,
w142=a2+c2-2accos2π
3 =a2+c2+ac=(a+c)2-ac=(a+c)2-60,
89 a+c=16,89△ABCF7 30.(12c)
18.4:(1)s1j#[Zw 珋x=1
4×(10+11+13+12)=11.5,
珋y=1
4×(22+24+31+27)=26,
∑
4
i=1
xiyi=10×22+11×24+13×31+12×27=1211,
∑
4
i=1
x2
i=102+112+132+122=534;
∴^b=
∑
4
i=1
xiyi-4珋x珋y
∑
4
i=1
x2
i-4珋x2
=1211-4×11.5×26
534-4×11.52 =15
5=3;(8c)
: ^a=珋y-^b珋x=26-3×11.5=-8.5,
∴^y=3x-8.5.(10c)
(2)s(1)w, x=8.5M,^y=3×8.5-8.5=17,
∴% 5]\]^_7 8.5`1M,abbcX7 17d.(12c)
19.4:(1)ðñ:∵EP¡e ADFjG,∴DE=EA=2,
?△EDCj,sfZ$!w,
CE2=DC2+ED2-2DC·ED·cos45° 槡=8+4-2×22×2×槡2
2=4,
∴CE=2=DE,∵CE2+DE2=8=DC2,
∴CE⊥DE,∴CE⊥EA,CE⊥E′E,AE∩E′E=E,!"#$[%10 &]
∵AEAB AEE′,E′EAB AEE′,
∴CE⊥AB AEE′.(6c)
(2)£ AEFjG O,9 O7gG, 1-a<0,4w a>1.(3c)
(2)DI g(x)=(x+1)e-x-1,ß!w g′(x)=-x
ex ,(4c)
x<0M,g′(x)>0;x>0M,g′(x)<0,
89 g(x)?(-!,0)OÔÕÅQ,?(0,+!)OÔÕÅÆ,
89 x=0M,g(x)£w«º
,g(x)max=g(0)=0.(6c)
s(1)[f′(x)=[x2+(2-a)x+1-a]ex,
° h(x)=x2+(2-a)x+1-a=0,
4w x=-1Ã x=a-1.(7c)
① 0<a≤2M,-1<a-1,
> x∈(-!,-1)M,h(x)>0,f(x)ÔÕÅQ;
x∈(-1,a-1)M,h(x)<0,f(x)ÔÕÅÆ;
x∈(a-1,+!)M,h(x)>0,f(x)ÔÕÅQ.(8c)
89 x=-1M,f(x)£wkº
,f(-1)=(2+a)e-1,
67 a>0,89 f(-1)=(2+a)e-1>0.
x=a-1M,f(x)£wk¬
,f(a-1)=(2-a)ea-1,
67 a≤2,89 f(a-1)=(2-a)ea-1≥0.(9c)
v x→ -!M,x2-ax+1>0,ex>0,89 f(x)>0,
x→ +!M,x2-ax+1>0,ex>0,89 f(x)>0
67 g(x)max=0,89 f(x)≥g(x)max.(10c)
② a=0M,f(x)=(x2+1)ex>0%Ðõ,(11c)
¼O[, 0≤a≤2M,Dx1,x2∈R,f(x1)≥g(x2).(12c)
22.4:(1)∵ρ=4cosθ
2sinθ
2,∴ρ=2sinθ,u ρ2=2ρsinθ,
ÿ ρ2=x2+y2,ρsinθ=yûüOw,
x2+y2=2y,!"#$[%12 &]
∴&¡ CF Ñ¿{7 x2+y2=2y.(5c)
(2)s1[ ¡ lFl#¿{7
x=1-槡3
2t
y=1
2
{ t
(t7l#),ûü x2+y2=2y!w
t2-(槡3+1)t+1=0,
G P,QDEFl#cd7 t1,t2,
∴t1+t2 槡=1+ 3>0,t1t2=1>0,
∴t1>0,t2>0,∴ 1
|MP|+ 1
|MQ|=|MP|+|MQ|
|MP||MQ| =|t1|+|t2|
|t1||t2| =t1+t2
t1t2
槡= 3+1.(10c)
23.4:(1)Ç f(x)+f(x-1)>3u7|2x+1|+|2x-1|>3,
ÇmI
x<-1
2
-2x-1-2x{ +1>3
Ã
-1
2≤x≤ 1
2
2x+1-2x{ +1>3
Ã
x>1
2
2x+1+2x{ -1>3
,
4w x<-3
4Ã x>3
4,
∴gÇF4n7{x|x<-3
4Ã x>3
4}.(5c)
(2)∵f(x)+f(x+3)=|2x+1|+|2x+7|≥|2x+1-(2x+7)|=6,op(2x+1)(2x+7)
≤0,u -7
2≤x≤ -1
2M,f(x)+f(x+3)£«¬
6,
∴a2+5a<6,
4w -6<a<1,
∴¾# aF£
¤¥7(-6,1).(10c)!"#$[%13 &]
!$
1.【23】D
【45】∵A∩B={2},∴2∈B,∴4-4+m=0,∴m=0,∴B={x|x2-2x=0}={0,2}.:; D.
2.【23】C
【45】2(2-i)
1-i =2(2-i)(1+i)
(1-i)(1+i)=3+i.:; C.
3.【23】C
【45】∵he7m#FÇÈ#Ä a{ }n j,a2 =1,a4a6 =64,∴
a1q=1
a1q3·a1q5{ =64
,o q>0,4w a1
=1
2,q=2,∴tÈ q=2.:; C.
4.【23】A
【45】∵cosα=-4
5,α∈(-π,0),∴sinα=-3
5,tanα=3
4,> tan(α-π
4)=tanα-1
1+tanα=
3
4-1
1+3
4
=-1
7,:; A.
5.【23】B
【45】s a,bPÏB ¡a,bAy.RSÐõ,Zçr¯.∴ “a,bAy”P“a,bPÏB
¡”FUqrcíî.:; B.
6.【23】C
【45】67s&¡ C:x2
a2 -y2
3=1(a>0)F}qúG7(2,0),89 a2 +3=4,: a2 =1,6ts
&¡F¿{7:x2-y2
3=1,89ê56¡¿{7:y 槡=± 3x.:; C.
7.【23】D
【45】sI 0<log3e<1<ln3,[t#³u{Z[F#
7:M=a×b-1=log3e×ln3-
1=1-1=0.:; D.
8.【23】A
【45】N# f(x)=2sin(2x+φ)(|φ|<π
2)FKÀvAw π
12qÔHÙÎK8DE45
7:g(x)=2sin[2(x+π
12)+φ]=2sin(2x+π
6+φ),s g(x)¦I yhD¨,> π
6+φ=kπ+π
2,
φ=kπ+π
3,k∈Z,v|φ|<π
2,89 φ=π
3,u f(x)=2sin(2x+π
3), x∈[0,π
2]M,2x+π
3∈
[π
3,4π
3],f(x)min=f(4π
3) 槡=- 3,:; A.
9.【23】D
【45】Çl#Ä a{ }n Ftl7 d,∵Sm-1 =16,Sm =25,Sm+2 =49(m≥2,m∈N),∴am =Sm -
Sm-1=25-16=a1+(m-1)d,am+1+am+2=Sm+2-Sm =49-25=2a1+md+(m+1)d,Sm =25=!"#$[%14 &]
ma1+m(m-1)
2 d,'õ4w:m=5,a1=1,d=2.:; D.
10.【23】C
【45】N# f(x)=e x -2|x|-1PxN#,yz;e B, x>0M,N# f(x)=ex-2x-1,Z
wf′(x)=ex-2, x∈(0,ln2)M,f′(x)<0,N#PÆN#, x>ln2M,f′(x)>0,N#P
QN#,yz;e A,D,:; C.
11.【23】B
【45】s1=Z[ PA,PE,PFppQ ,∴PA⊥AB PEF,∴VGA-PEF =1
3S△PEF·PA=1
3×
1
2×1×1×2=1
3, PAB AEFFÜ7 h,v S△AEF =22-1
2×1×2-1
2×1×2-1
2×1×
1=3
2,∴VGP-AEF =1
3×3
2×h=h
2,∴ h
2=1
3,: h=2
3.:; B.
!
" #
$
12.【23】B
【45】{|N# f(x)=lnx
x,!#f′(x)=1-lnx
x2 , 0<x<eM,f′(x)>0,f(x)ÅQ;x>e
M,f′(x)<0,f(x)ÅÆ.Zw f(x)F«º
7 f(e)=1
e.s 槡2< 5<e,Zw f(2)<f(槡5),
uVln2
2 < 槡ln 5
槡5
,u 槡ln5> 5ln2,:①mn;s槡e<槡π<e,Zw f(槡e)<f(槡π),uV
槡ln e
槡e
<ln槡π
槡π
,u lnπ> π
槡e,:②mn; g(x)=2x-x2,Zw g(2)=g(4)=0,? 2<x<
4M,g(x)<0,uV 2槡11 <11,:③mn;7 2槡3 <3=2log23Ðõ,>槡3<log23=ln3
ln2= 槡2ln 3
ln2Ð
õ,> 槡ln 3
槡3
>ln2
2Ðõ,}~ 槡ln 3
槡3
<ln2
2,89 2槡3 >3,:④fg.
13.【23】40
【45】∵(x-2)5Fet7 Tr+1=Cr
5·(-2)r·x5-r,∴x(x-2)5Fet
7 Tr+1=x·Cr
5·(-2)r·x5-r=(-2)r·Cr
5·x6-r,° 6-r=4,ßw r=2,∴x4 eF#7
C2
5·(-2)2=40.
14.【23】1
【45】ÇÛ¹ÞFABOPW8Þ,N#u:z=2x+y,êj z£w«¬
M,
êDE=X¹Þ ¡? yhOFjÜ«¬,[t#³N#FDE=XZ[N#
n· →BD=-x+2y=0
n· →BE=y+k
2z{ =0
,£ y=1,w n=(2,1,-2
k),
AB BDCF÷Àb m=(0,0,1),
∵BÑ E-BD-CFABѺI 60°,
∴|cos〈m,n〉|=
2
k
5+4
k槡 2
<cos60°=1
2,
s k>0,4w k> 槡2 15
5 .(12c)
20.4:(1)FW¿{7x2
a2 +y2
b2 =1(a>b>0),CúÜ7 c,
> A(a,0),M(0,b),F(c,0),
∴ →MF(c,-b),→FA(a-c,0),
∵ →MF· →FA 槡= 2-1,
∴ac-c2 槡= 2-1,
v e=c
a=槡2
2,a2=b2+c2,
∴a2=2,b2=1.
:FW¿{7x2
2+y2=1.(4c)
(2) P(x1,y1),Q(x2,y2),F7△PQMFQ,∴MP⊥FQ.
∵M(0,1),F(1,0),
∴kMF =-1,∴kPQ =1,
¡ PQF¿{7 y=x+m,ûüx2
2+y2=1w 3x2+4mx+2m2-2=0,
∴Δ=(4m)2-12(2m2-2)>0,4w 槡- 3<m 槡< 3o m≠1,
∴x1+x2=-4
3m,x1x2=2m2-2
3 ,
∵ →PF⊥ →MQ,→PF=(1-x1,-y1),→MQ=(x2,y2-1),
∴x2-x1x2+y1-y1y2=0,
u(1-m)(x1+x2)-2x1x2+m-m2=0,
s#F¦,w 3m2+m-4=0.
4w m=-4
3Ã m=1(þ).!"#$[%18 &]
:? ¡ l,G F7△PQMFQ,o ¡ lF¿{7 y=x-4
3.(12c)
21.4:(1)N# f(x)=lnx-ex+aF!#7f′(x)=1
x-ex+a.
&¡ f(x)?G(1,f(1))(F;¡"7 1-e1+a,
;G7(1,-e1+a),Zw;¡¿{7 y+e1+a=(1-e1+a)(x-1),
° y=0,Zw x= 1
1-e1+a,s1=Zw 1
1-e1+a>0,
Zw e1+a<1,4w a<-1.(5c)
(2)f′(x)=1
x-ex+a,Z[f′(x)?(0,+∞)ÔÕÅÆ,
x→0M,f′(x)→ +∞,x→ +∞M,f′(x)→ -∞,
∴x0∈(0,+∞), x∈(0,x0)M,f′(x)>0,f(x)ÔÕÅQ,
x∈(x0,+∞)M,f′(x)<0,f(x)ÔÕÅÆ,
uf′(x0)=1
x0
-ex0+a=0,
u a=-x0-lnx0
° g(x)=-x-lnx,
ó[ g(x)ÔÕÅÆ,g(1
e)=1-1
e,
g(x)>1-1
eM,0<x<1
e,
u x0∈(0,1
e),
∴f(x)≤f(x0)=lnx0-ex0+a=lnx0-1
x0
,
° φ(x)=lnx-1
x,φ′(x)=x+1
x2 ,
x∈(0,1
e)M,φ′(x)>0,φ(x)ÔÕÅQ,
∴φ(x)<φ(1
e)=-1-e,
∴f(x)<-1-e.(12c)
22.4:(1) CFk¿{7:ρ=4cos(θ-π
3)=2cosθ 槡+23sinθ,
∴ρ2=2ρcosθ 槡+23ρsinθ.
∵x=ρcosθ,y=ρsinθ,x2+y2=ρ2,
∴ Ñ¿{7:x2+y2=2x 槡+23y,
∴ CF Ñ¿{7 x2+y2-2x 槡-23y=0.(5c)
(2)ÿ ¡ lFl#¿{ûü x2+y2-2x 槡-23y=0,!"#$[%19 &]
w t2-2(槡3-1)tsinφ 槡-23=0,
G A、B8DEFl#7 t1 t2,
>:t1·t2 槡=-23,
∴|PA||PB 槡|=23.(10c)
23.4:(1)f(x)>g(x),u|2x-2|<|x|.
(2x-2)2<x2,!w(3x-2)(x-2)<0,4w 2
3<x<2,
∴Ç f(x)>g(x)F4n7{x|2
3<x<2}.(5c)
(2)7 2f(x)+g(x)=2|x|+|2x-2|,
x≤0M,qÇ -2x-2x+2>ax+1%Ðõ,u ax<-4x+1,
7 x=0,Ç%Ðõ,a∈R,
7 x<0,> a>-4+1
x%Ðõ,tM a≥ -4;
0<x<1M,q 2x-2x+2>ax+1%Ðõ,u a<1
x,Zw a≤1,
x≥1M,q 2x+2x-2>ax+1%Ðõ,u a<4-3
x%Ðõ,Zw a<1,
¼O¾# aF£
¤¥P[-4,1).(10c)!"#$[%20 &]
!%
1.【23】B
【45】4~Ç x2-x-6≥0w x≤ -2Ã x≥3,u A={x|x≤ -2Ã x≥3},v B={0,1,
2,3,4},89 A∩B={3,4},:; B.
2.【23】D
【45】s z1=-1-i,z1z=4,w z=4
z1
= 4
-1-i= 4(-1+i)
(-1-i)(-1+i)=-2+2i,∴z=-2-2i.>
@# z?@ABCDEGF7(-2,-2).:; D.
3.【23】D
【45】[AFË,Zyz A,B,[vA ÑÑËFË,Zyz C,:; D.
4.【23】A
【45】s&¡x2
a2 -y2
b2 =1(a>0,b>0)F}í56¡¿{7 y=3
4x,Zw b
a=3
4,uc2-a2
a2 =9
16,
4w e2=25
16,e=5
4.:; A.
5.【23】C
【45】∵ Ñ α?%KL,cosα= - 槡22
3 ,∴ sinα= 1-cos2槡 α=1
3,∴ cos2(α
2 +π
4)=
1+cos(α+π
2)
2 =1-sinα
2 =1
3.:; C.
6.【23】D
【45】s1=[(x+1)nFFhe#7 32,u 2n=32,4w n=5,>e(x+1)n
=(x+1)5Fj x4Fe7 C1
5·x4=5x4,89 x4F#7 5,:; D.
7.【23】A
【45】W1,∵a=30cm,b=40cm,∴¬m¿ËFò7 40-30=10,ºm¿ËFò c=
a2+b槡 2 =50.>¬m¿ËB=7 100,ºm¿ËB=7 2500,>sDEïFïXYtwù
S?¬m¿ËCFïP:p=100
2500=1
25.:; A.
8.【23】A
【45】f(-x)=(-x-1
x)cos(-x)=-(x+1
x)cosx=-f(x),N#PN#,K¦IgG
D¨,yz B,D,f(1)=2cos1>0,yz C,:; A.
9.【23】A
【45】N# y=sin(2x-π
6)FKÀvAw π
6qÔHÙ,w y=sin[2(x+π
6)-π
6]=
sin(2x+π
6).° -π
2+2kπ≤2x+π
6≤2kπ+π
2(k∈Z),4w -π
3+kπ≤x≤kπ+π
6(k∈Z),
k=0M,N#FÔÕÅQOâ7[-π
3,π
6].
10.【23】C
【45】?△ABCj,∵sinC=2sinB,∴smZ$!Zw c=2b,v∵a=3,A=π
3,∴sfZ$!"#$[%21 &]
!Zw 9=b2+c2-bc=b2+(2b)2-b·2b,4w b 槡= 3,∴c 槡=2 3,∴△ABCF7 a+b+c
槡 槡 槡=3+ 3+23=3+33.:; C.
11.【23】B
【45】s 1 = Z w: ¡ OP A B A1BD8 Ð F Ñ αF £
¤ ¥ P [∠AOA1,π
2]∪
[∠C1OA1,π
2]. £ AB=2.? Rt△ AOA1 j,sin∠AOA1 =AA1
A1O = 2
22+(槡2)槡 2
=槡6
3.
sin∠C1OA1=sin(π-2∠AOA1)=sin2∠AOA1 =2sin∠AOA1cos∠AOA1 =2×槡6
3 ×槡3
3 = 槡22
3 >
槡6
3,sinπ
2=1.∴sinαF£
¤¥P[槡6
3,1].:; B.
12.【23】C
【45】 y=h(x)FK y=g(x)FK¦I ¡ y=0D¨,> y=h(x)=-mx,s f(x)
g(x)FKO?¦I ¡ y=0D¨FG,;¡¿{7 y-y0=2
x0
(x-x0),vt ¡cosθ= a·b
|a||b|=1
2,∴θ=π
3.
14.【23】2
【45】s¾# x,yëì
x-y≥0
x+2y-6≤0
x-3y≤{ 0
,ZyPW,z=y+2
x+1FDE=X7ZyPCFG
$G D(-1,-2)©¡F",∵kDO =0+2
0+1=2,∴z=y+2
x+1FǼ
P 2.!"#$[%22 &]
!
"
!"
!#
!$
!%
!&
&
%
$
#
"
!"!#!$!%!&
#
%$#" &$
15.【23】9
2
【45】[1=,N# f(x)=
1+log2(2-x),x<1
2x-1,x≥{ 1
,> f(-2)=1+log2[2-(-2)]=1+2=
3,f(log23)=2log23-1=3
2,> f(-2)+f(log23)=3+3
2=9
2.
16.【23】3
【45】W, P(x0,y0),< PW¡FQ¡ PM,Qì7 M,ã∠PAM=α, PA7øù¡F
;¡M,α£w«¬
,sinα£w«¬
,槡2|PA|+|PF|
|PF| = 槡2
|PF|
|PA|
+1= 槡2
|PM|
|PA|
+1= 槡2
sinα+1£
wǼ
,∵x2=4y,∴y=x2
4,∴y′=x
2,∴kPA =x0
2,v kPA =y0-(-1)
x0-0 =
x2
0
4+1
x0
,∴x0
2=
x2
0
4+1
x0
,
4w x0=±2,∴|PA|= x2
0+(x2
0
4+1)槡 2 槡=2 2,|PM|=x2
0
4+1=2,∴sinα= 2
槡22
=槡2
2,∴g
FǼ
7槡2
槡2
2
+1=2+1=3.
!
"
!"
!#
!$
!%
!&
&
%
$
#
"
#
!"!#!$ $!%!&
%
& '
"#(%!
%$#" &
17.4:(1)tl d7FÇl#Ä{an}j,
s S3=9,w a1+a2+a3=9,u 3a2=9,Zw a2=3,
v∵a1,a2,a5ÐÇÈ#Ä,∴a2
2=a1a5,
u a2
2=(a2-d)(a2+3d),
Zw d2-2d=0,
4w d=2Ã d=0(þ),
∴a1=a2-d=1,: an=2n-1.(6c)!"#$[%23 &]
(2)s{bn-an}PNe7 1,tÈ7 2FÇÈ#Ä,Zw bn-an=2n-1,
∴bn=2n-1+an=2n-1+2n-1,(9c)
∴ ne Tn=(1+2+… +2n-1)+(1+3+… +2n-1)=1-2n
1-2+1
2n(1+2n-1)=2n-1+
n2.(12c)
18.4:(1)¡î Ai7“% i¦Â?c8Þ,s z=2y-x,w y=1
2x+1
2z,Aw
¡ y=1
2x+1
2z,sKZ[: ¡ y=1
2x+1
2z¶ a5=8.:; C.
7.【23】B
【45】l,mPpíF ¡,mQ IAB α, l⊥mM,l//αà lα,RS,7 l//α,}$V
l⊥m,89 l,mPpíF ¡,mQ IAB α,>“l⊥m”P“l//α”FUqrcíî.:
; B.
8.【23】A
【45】N# y=cos(π
6-2x)=cos(2x-π
6)=sin(π
2+2x-π
6)=sin(2x+π
3),Z[ÀÑAw π
24
qÔH,w y=sin(2x+π
4)FK.:; A.
9.【23】D!"#$[%35 &]
【45】∵?ÊË ABCDj,∠ABC=π
2,AD//BC,BC=2AD=2AB=2,∴ÿÊË ABCDÒ AD8?
F ¡ÓÁ}»ËÐF&B8¥ÐFDESP:}qIBCJ7 AB=1,'7 BC=2F®
Æþ}qIBCJ7 AB=1,'7 BC-AD=2-1=1FG,∴DESF¹B=7:S=π×12 +
2π×1×2+π×1× 12+1槡 2 =( 槡5+ 2)π.:; D.
10.【23】B
【45】[1=,;¡F"7 k,ê"ÑP θ,f(x)=槡3
3x3 +lnx-x,>f′(x) 槡= 3x2 +1
x
-1,>V k=f′(1) 槡= 3,> tanθ 槡= 3,vs 0≤θ<π,> θ=π
3,:; B.
11.【23】B
【45】s|→AB-→NB|=|→AM-→AN|,Zw|→AN|=|→MN|,£ AMFjG7 O,©ª ON,> ON⊥AM,
∵ò7 4FÔË ABCDj,∠A=60°,∴ →AD· →DC=4×4×1
2=8,> →AM· →AN= →AM·(→AO+
→ON)=→AM· →AO+→AM· →ON=1
2
→AM2=1
2(→AD+1
2
→DC)
2
=1
2(→AD2+→AD· →DC+1
4
→DC2)=1
2(16+
8+1
4×16)=14.:; B.
12.【23】A
【45】äå´b X~B(3,1
4),
XY X=2MFï7 P(X=2)=C2
3(1
4)
2
(3
4)=9
64,
#$Ò7 EX=np=3×1
4=3
4.(12c)
18.4:(1)s cosA=1
8,
> 0<A<π
2,o sinA= 槡37
8 ,
smZ$!Zw:sinB=b
asinA= 槡57
16,
67 b<a,
89 0<B<A<π
2,
89 cosB=9
16,
Zw:sinC=sin(A+B)=sinAcosB+cosAsinB=槡7
4.(6c)!"#$[%37 &]
(2)S△ABC =1
2bcsinA=1
2bc× 槡37
8 = 槡157
4 ,
89 bc=20,
Zw:a2=b2+c2-2bccosA=b2+c2-2×20×1
8=36,
89 b2+c2=41,Zw:(b+c)2=b2+c2+2bc=41+40=81,
89 b+c=9.(12c)
19.ðñ:(1)< P PO⊥AD,Qì7 O,©ª AO,BO,
s∠PAD=120°,w∠PAO=60°,
∴? Rt△PAOj,PO=PAsin∠PAO=2sin60°=2×槡3
2 槡= 3,
∵∠BAD=120°,∴∠BAO=60°,AO=AO,
∴△PAO≌△BAO,∴BO=PO 槡= 3,
∵E,FcdP PD,BDFjG,EF=槡6
2,
∴EFP△PBDFjH¡,∴PB=2EF=2×槡6
2 槡= 6,
∴PB2=PO2+BO2,∴PO⊥BO,
∵PO⊥AD,∴PO⊥AB ABCD,
v POAB PAD,∴AB PAD⊥AB ABCD.(5c)
(2)4:9 O7gG,OB7 xh,OD7 yh,OP7 zh,ôõöâ Ñ,
!
"
#
$
%
&
'
(
)
*
+
A(0,1,0),P(0,0,槡3),B(槡3,0,0),D(0,3,0),
∴E(0,3
2,槡3
2),F(槡3
2,3
2,0),
→AE=(0,1
2,槡3
2),→AF=(槡3
2,1
2,0),
AB ABCDF}q÷Àb n=(0,0,1),
AB ACEF÷Àb m=(x,y,z),
>
m· →AE=1
2y+槡3
2z=0
m· →AF=槡3
2x+1
2y
=0
,£ x=1,w m=(1, 槡- 3,1),
iBÑFABÑFº¬7 θ,
> cosθ=|cos〈m,n〉|= |m·n|
|m|·|n|=槡5
5,
∴iBÑ E-AC-DFfZ
7槡5
5.(12c)
20.4:(1)s1=,wúÜ 2c 槡=25,→PB=→BA,!"#$[%38 &]
∴c 槡= 5,oG B7¡e APFjG,
∵G P(0,槡23),A(a,0),
∴B(a
2,槡3),
G B(a
2,槡3)? EO,
∴c 槡= 5,o a2
4a2+3
b2 =1①,
v a2=b2+c2,u a2=b2+5②,
'õ①②4w b2=4,a2=b2+c2=9,
∴ EF¿{7x2
9+y2
4=1.(5c)
(2)s1Zw S△PAN =6S△PBM,
u 1
2|PA|·|PN|·sin∠APN=6×1
2|PB|·|PM|·sin∠BPM,
∴|PN|=3|PM|,
∴ →PN=3 →PM,
M(x1,y1),N(x2,y2),
IP →PM=(x1,y1 槡-23),→PN=(x2,y2 槡-23),
∴(x2,y2 槡-23)=3(x1,y1 槡-23),
∴x2=3x1,ux2
x1
=3,
IPx2
x1
+x1
x2
=10
3,
u(x1+x2)2
x1x2
=16
3①,
'õ
y=kx 槡+23
x2
9+y2
4{ =1
,ýþ y,!w(9k2+4)x2 槡+363kx+72=0,
s Δ=( 槡363k)2
-4×(9k2+4)×72>0,4w k2>8
9,
∴x1+x2=- 槡363k
9k2+4,x1x2= 72
9k2+4,
ûü①Z4w k2=32
9,ëì k2>8
9,
∴k=± 槡42
3 ,
u ¡ lF" k=± 槡42
3 .(12c)!"#$[%39 &]
21.4:(1)f′(x)=ex-(x-a),
7 f(x)?(-!,+!)OÔÕÅQ,
> ex-(x-a)≥0u a≥x-ex? R%Ðõ,
° h(x)=x-ex,> h′(x)=1-ex,
° h′(x)≥0,4w:x≤0,
° h′(x)≤0,4w:x≥0,
: h(x)?(-!,0)ÅQ,?(0,+!)ÅÆ,
: h(x)max=h(0)=-1,
: a≥ -1.(4c)
(2)s f(x)=ex-1
2(x-a)2+4,wf′(x)=ex-x+a,
° h(x)=ex-x+a,> h′(x)=ex-1≥0,
: h(x)?[0,+!)ÅQ,o h(0)=1+a,
① a≥ -1M,f′(x)≥0,N# f(x)ÅQ,
sI f(x)≥0%Ðõ,>V f(0)=5-1
2a2≥0,u 槡- 10≤a≤ 槡10,
: -1≤a≤ 槡10ëìíî,
② a<-1M,>? x0∈(0,+!),w h(x0)=0,
0<x<x0M,h(x)<0,>f′(x)<0,f(x)ÅÆ,
x>x0M,h(x)>0,>f′(x)>0,f(x)ÅQ,
: f(x)min=f(x0)=ex0 -1
2(x0-a)2+4≥0,
v x0ëì h(x0)=ex0 -x0+a=0,u x0-a=ex0,
: ex0 -1
2e2x0 +4≥0,> e2x0 -2ex0 -8≤0,
u(ex0 -4)(ex0 +2)≤0,w 0<x0≤ln4,
v a=x0-ex0,° u(x)=x-ex,> u′(x)=1-ex,
Z[, 0<x≤ln4M,u′(x)<0,> u(x)ÅÆ,
: u(x)≥ln4-4,
tM ln4-4≤a<-1,ëìíî,
¼O,aF¤¥P[2ln2-4,槡10].(12c)
22.4:(1) O1 O2Fk¿{cd7 ρ=4 ρ=4sinθ,
ÁÂ7 Ñ¿{7:
O1F Ñ¿{7 x2+y2=16,
O2F Ñ¿{7 x2+y2=4y.(5c)
(2)ÿ θ=π
6(ρ>0)ûü O1 O2Fk¿{:
w A(4,π
6)、B(2,π
6)!"#$[%40 &]
89|AB|=2,qÑË ABCB=£«º
,
q O2OFG C ¡ ABFÜ«º,
4
y 槡=- 3x+2
x2+y2=4{ y
,
w:G CF Ñ7(-1, 槡2+ 3).(10c)
23.4:(1)67 g(x)=|x-1|+|2x+4|=
3x+3,x≥1
x+5,-2≤x<1
-3x-3,x{ <-2
,
:s g(x)<6w:
3x+3<6
x≥{ 1
Ã
x+5<6
-2≤x{ <1
Ã
-3x-3<6
x{ <-2
,
4wà -2≤x<1à -3<x<-2,
:gÇ4n7:(-3,1).(5c)
(2)Z[ g(x)F
P7[3,+!),}~ f(x)F
P7(-!,a+2].