文科数学参考答案及评分细则 第 1 页(共 9 页)
2020 年福建省高三毕业班质量检查测试
文科数学参考答案及评分细则
评分说明:
1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题
的主要考查内容比照评分标准制定相应的评分细则。
2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的
内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数
的一半;如果后继部分的解答有较严重的错误,就不再给分。
3.解答右端所注分数,表示考生正确做到这一步应得的累加分数。
4.只给整数分数。选择题和填空题不给中间分。
一、选择题:本大题考查基础知识和基本运算。每小题 5 分,满分 60 分。
1.B 2.B 3.C 4.D 5.D 6.A
7.C 8.C 9.A 10.B 11.D 12.C
二、填空题:本大题考查基础知识和基本运算。每小题 5 分,满分 20 分。
13.2 14. 4 15.15 16.①③④
三、解答题:本大题共 6 小题,共 70 分。解答应写出文字说明,证明过程或演算步骤。
17.本小题主要考查递推数列、等差数列、数列求和等基础知识,考查推理论证能力、运
算求解能力,考查化归与转化思想、函数与方程思想,考查逻辑推理、数学运算等核
心素养,体现基础性、综合性.满分 12 分.
解:(1)因为 +1 2 +1 +1 2 +12n n n n n n n n nb b a a a a a a a , ················· 2 分
由题意知 2 +122n n na a a ,可得 2 +122n n na a a , ······························ 3 分
即 +1 2nnbb,所以 nb 是等差数列. ····················································· 4 分
又 1 2 1 4b a a , ··············································································· 5 分
所以 4+2 1 2 +2nb n n , n N . ······················································ 6 分
(2)由(1)知 22nbn,
当 2n≥ 时, 1 2 1 1 2 1n n n n na a a a a a a a , ························· 8 分
即 1 1 2 1nna a b b b ,
即 2 4 6 2 1na n n n .( ) ················································· 9 分
又当 1n 时, 1 2a ,满足( ), 所以 +1na n n , . ···················· 10 分
所以
1 1 1 1= 11na n n n n
, ······························································ 11 分
文科数学参考答案及评分细则 第 2 页(共 9 页)
所以
12
1 1 1
n
n
S a a a
1 1 1 1 11 2 2 3 +1nn
= 1
n
n
. ·············································································· 12 分
18.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,三棱锥的体积及
空间点面距离等基础知识;考查空间想象能力、推理论证能力;考查化归与转化思想、
函数与方程思想;考查直观想象、逻辑推理、数学运算等核心素养,体现基础性、综
合性.满分 12 分.
解法一:(1)因为 AD BC∥ , 90D , 3BC , 1AD DC,
依题意得, 1 90ADC D , 1 1DC , ·············································· 1 分
因为 1 22DB ,所以 2 2 2
11BC DC D B,故 1 90BDC,即 11CD BD , ·· 3 分
又因为 11CD AD , 1 1 1AD BD D ,所以 1CD 平面 1ABD . ····················· 5 分
又因为 1CD 平面 1ACD ,所以平面 1ACD 平面 1ABD . ··························· 6 分
(2)因为 AD BC∥ , 90D , 3BC , 1AD DC,所以 ABC△ 的面积为 3
2
,
设 1D 到面 ABC 的距离 h ,则三棱锥 1D ABC 的体积为
1
13
32D ABCVh ,
故要使
1D ABCV 取到最大值,需且仅需 h 取到最大值. ································ 7 分
取 AC 的中点 M ,连结 1DM ,依题意知 111AD D C, 1 90ADC,
所以 1D M AC , 1
2
2DM ,且 1h D M≤ .
因为平面 1ACD 平面 ABC AC , 1D M AC , 1DM平面 ,
所以当平面 平面 ABC 时, 1DM 平面 ABC , 1D M h ,
故当且仅当平面 平面 时, 取得最大值. ······················ 8 分
此时
1
1 3 2 2
3 2 2 4D ABCV , ···························································· 9 分
设 B 到平面 1ACD 的距离为 d ,可得
11
11 =3 2 6D ABC B ACD
dV V d , ············· 11 分
故 2
64
d ,解得 32
2d ,
故 B 到平面 1ACD 的距离为 32
2
. ························································ 12 分
文科数学参考答案及评分细则 第 3 页(共 9 页)
解法二:(1)同解法一.
(2)因为 AD BC∥ , 90D , 3BC , 1AD DC,所以 ABC△ 的面积为 3
2
,
设 1D 到面 ABC 的距离 h ,则三棱锥 1D ABC 的体积为
1
13
32D ABCVh ,
故要使
1D ABCV 取到最大值,须且仅需 h 取到最大值. ·································· 7 分
取 AC 的中点 M ,连结 1DM ,依题意知 111AD D C, 1 90ADC,
所以 1D M AC , 1
2
2DM ,且 1h D M≤ .
因为平面 1ACD 平面 ABC AC , 1D M AC , 1DM平面 1ACD ,
所以当平面 1ACD 平面 ABC 时, 1DM 平面 ABC , 1D M h ,
故当且仅当平面 平面 时, 取得最大值. ························· 8 分
过点 B 作 BN AC ,垂足为 N ,
因为平面 1ACD 平面 ABC ,平面 1ACD 平面 ABC AC , BN 平面 ABC ,
所以 BN 平面 1ACD ,所以 B 到平面 1ACD 的距离为 BN . ·························· 9 分
在 ACD△ 中, 90D , 1AD DC,所以 2AC , ······················· 10 分
在 ABC△ 中, 1
2ABCS AC BN △ ,所以 13222BN ,
所以 32
2BN ,即 B 到平面 1ACD 的距离为 32
2
. ··································· 12 分
19.本小题主要考查频率分布直方图、回归分析等基础知识,考查数据处理能力、运算求解
能力、应用意识,考查统计与概率思想,考查数学抽象、逻辑推理、数学建模、数学运
算、数据分析等核心素养,体现综合性、应用性.满分 12 分.
解:(1)由频率分布直方图可得 2018 年这 50 户家庭人均年纯收入的平均值为
2500 0.04 3500 0.12 4500 0.32 5500 0.28 6500 0.16 7500 0.08
=5140 (元). ···················································································· 6 分
(2)依题意,可得: 1 2 3 4 5 6 3.56x , ······································ 7 分
故 6 7182 3426 6 3.5
xyy x
, ·································································· 8 分
所以
66
11
66 2
2 2 2
11
( )( ) 6 7602 7182 420ˆ 241 4 9 16 25 36 6 3.5 17.5( ) 6
i i i i
ii
ii
ii
x x y y x y x y
b
x x x x
,
········································································································ 9 分
文科数学参考答案及评分细则 第 4 页(共 9 页)
ˆˆ 342 24 3.5 258a y bx ,
所以 y 关于 x 的线性回归方程为 ˆ 24 258yx. ······································· 10 分
令 13x ,得 2020 年 1 月该家庭人均月纯收入为 13ˆ 24 13 258 570y (元),
令 24x ,得 2020 年 12 月该家庭人均月纯收入为
24ˆ 24 24 258 834y (元), ··························································· 11 分
由题意知,该家庭的人均月纯收入的估计值成等差数列,
所以,2020 年该家庭人均年纯收入的估计值为 (570 834) 12 8424 80002S ,
综上,预测该家庭能在 2020 年实现小康生活. ········································· 12 分
20.本小题主要考查抛物线的标准方程、圆的几何性质、直线与圆的位置关系、直线与抛
物线的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、
函数与方程思想、特殊与一般思想,考查数学运算,逻辑推理等核心素养,体现综合
性、创新性.满分 12 分.
解法一:(1)由题意得, ,02
pF
. ······················································ 1 分
依题意,当圆 M 过 F 时,因为QA 为直径,所以 90QFA ,即 FA x 轴.
设 11,A x y ,所以 1 2
px ,又 2
112y px ,解得 1yp ,故不妨设 ,2
pAp
, · 2 分
因为 1 42 2 2QAF
ppS FQ FA △ ,又06p,得
2
2 4QAF
pSp△ ,······· 3 分
由题意得, 21234pp,即 2 8 12 0pp ,解得 2p 或 6p (舍去). · 4 分
故 2:4C y x . ···················································································· 5 分
(2)设直线 :l x a , l 被圆 M 所截得的弦长为t .
因为 4,0Q ,所以点 M 到 :l x a 的距离为
1 4
2
xda, ········································ 6 分
又圆 的半径 2 2
114
22
xyAQr
,………7 分
根据垂径定理有
2
22
2
t rd
, ···················· 8 分
得 2 22 2
1114 4
2 4 2
xyxt a
,
文科数学参考答案及评分细则 第 5 页(共 9 页)
化简得, 2 2 2
1 1 116 4 4 4t x y a x a , ············································· 9 分
把 2
114yx 代入上式得, 22
14 3 16 4t x a a a ,其中 1 0x , ················ 10 分
故当且仅当 3a 时,无论 1x 取何值,恒有 23t . ································ 11 分
所以存在直线 :3lx 被圆 M 所截得的弦长恒为 23.······························ 12 分
解法二:(1)同解法一.
(2)假设存在满足条件的直线 :l x a ,因为 4,0Q ,
取 0,0A 时,则圆 为 2 224xy ,直线 :l x a 被圆 M 截得的弦长为
222 2 2a ;
取 4,4A 时,则圆 为 224 2 4xy ,直线 :l x a 被圆 M 截得的弦长为
222 2 4 a ;
则 22222 2 2 =2 2 4aa ,解得 3a ,
所以,如果满足条件的直线 l 存在,只能是 :3lx ,且被动圆 M 截得的弦长为 23.
······································································································ 8 分
下面证明直线 :3lx 被动圆 M 截得的弦长恒为 23.
因为点 M 到 :3lx 的距离为 1 4 32
xd ·············································· 9 分
1 2
2
x ,
圆 M 的半径 2 2
114
22
xyAQr
, ················································ 10 分
又因为 2
114yx ,所以 2 2
111144 4 16=22
xxxxr
,
所以直线 :3lx 被动圆 M 截得的弦长等于
22
22 1 1 14 16 22 2 =2 342
x x xrd
.
综上,存在直线 :3lx 被圆 所截得的弦长恒为 . ·························· 12 分
21.本小题主要考查函数的零点、函数的单调性、导数及其应用、不等式等基础知识,考
查推理论证能力、运算求解能力、创新意识等,考查分类与整合思想、数形结合思想,
考查数学抽象、数学运算、逻辑推理等核心素养,体现综合性、应用性与创新性.满
文科数学参考答案及评分细则 第 6 页(共 9 页)
分 12 分.
解法一:(1)因为 2a , ln 2lnf x x a x x ,
① 当 20ex 时, ln 2 0x , 3ln +2f x x x , 3( ) 1fx x
, ········ 1 分
当 0,3x 时, 0fx , fx单调递减;当 23,ex 时, 0fx , fx单调递
增;所以当 =3x 时, fx取得最小值,
所以 3 = 3ln3+5 0f x f ≥ . ····························································· 2 分
② 当 2x≥e 时,ln 2 0x ≥ , ln 2f x x x , 1( ) 1 0fx x
, fx单调递增;
所以 22e = 4+e 0f x f ≥ . ······························································ 4 分
综上, 0fx ,因此, fx没有零点,即 的零点个数为 0. ············· 5 分
(2)要证 12, 3,9xx, 122 ln3f x f x≤ ,
只要证 3,9x , max min 2 ln3f x f x≤ 即可. ··································· 6 分
因为当 3,9x 时, ln ln3 ,ln9x a a a .
① 当 2 ln9a ≤ 时,
3ln + , 3,e ,
ln , e ,9 .
a
a
x x a x
fx
x x a x
································ 7 分
因为当 3,eax , = 3ln +f x x x a, 3= +1 0fx x
≥ , fx单调递增,
当 e ,9ax , = ln +f x x x a, 1= +1 0fx x
, fx单调递增,
又 3ln e e ln e ea a a aaa ,
所以 fx在 3,9 上单调递增, ···························································· 8 分
所以 min 3 3ln3 3f x f a , max 9 2ln3 9f x f a ,
所以 max min =ln3+6 2 2+ln3f x f x a≤ . ············································ 9 分
②当 ln 9a≥ 时, 3lnf x x x a , 3= +1 0fx x
≥ , fx在 3,9 上单调递增,
所以 min 3 3ln3 3f x f a , max 9 6ln3 9f x f a ,
所以 max min =6 3ln3f x f x.
又因为 2+ln3 6 3ln3 4ln3 4 0 ,
所以 max min =6 3ln3 2+ln3f x f x . ·············································· 11 分
因此, 12, 3,9xx时, 122+ln3f x f x ≤ . ······································ 12 分
文科数学参考答案及评分细则 第 7 页(共 9 页)
解法二:(1)设 2lng x x x ,则 2 1gx x
. ····························· 1 分
所以当 0,2x 时, 0gx , gx单调递减;
当 2+x, 时, 0gx , gx单调递增.
所以当 2x 时, gx取得最小值,所以 2 ln2 2 0g x g ≥ .·············· 3 分
又 ln 2 0x ≥ ,所以 ln 2 2ln 0f x x x x , ·································· 4 分
因此, fx没有零点,即 fx的零点个数为 0. ····································· 5 分
(2)要证 12, 3,9xx, 122 ln3f x f x≤ ,
只要证 3,9x , max min 2 ln3f x f x≤ 即可. ··································· 6 分
因为 ln 2lnf x x a x x ,
当 ln 0xa,即 eax 时, lnf x x x a , 1( ) 1 0fx x
,
所以 fx在 e,a 上单调递增;
当 ln 0xa,即 0eax 时, 3ln +f x x x a , 3( ) 1fx x
,
当 3eax , 时, 0fx , fx在 3ea, 上单调递增;
又当 eax 时, 3ln e e ln e ea a a aaa ,
所以 fx在 3 , 上单调递增.
因此 ln 2lnf x x a x x 在 3,9 上单调递增,
所以 min 3 ln3 2ln3 3f x f a , max 9 ln9 2ln9 9f x f a ,
max min = 2ln3 ln3 6 2ln3f x f x a a , ···································· 8 分
① 当 2 ln9a ≤ 时,
max min =2ln3 ln3 6 2ln3 ln3+6 2 2+ln3f x f x a a a ≤ . ·········· 9 分
②当 ln 9a≥ 时,
max min = 2ln3 ln3 6 2ln3 6 3ln3f x f x a a .
又因为 2+ln3 6 3ln3 4ln3 4 0 ,
所以 max min =6 3ln3 2+ln3f x f x . ·············································· 11 分
因此, 12, 3,9xx时, 122+ln3f x f x ≤ . ··································· 12 分
(二)选考题:共 10 分。请考生在第 22、23 两题中任选一题作答。如果多做,则按所做
的第一题计分。
文科数学参考答案及评分细则 第 8 页(共 9 页)
22.选修 44 :坐标系与参数方程
本小题主要考查参数方程、极坐标方程等基础知识,考查运算求解能力,考查数形结
合思想、化归与转化思想、函数与方程思想,考查直观想象、数学运算等核心素养,
体现基础性、综合性.满分 10 分.
解:(1)因为 1C 的参数方程为 cos ,
sin
x
y
( 为参数),
所以 22
1 :1C x y. ·········································································· 2 分
因为 2C 的极坐标方程为 2
2
12= 3+sin
,由 2 2 2xy , sin y 得,
22
2 :143
xyC . ··············································································· 5 分
(2)如图,设l 的倾斜角为 ,依题意 0 2
, ,
则 P 在 1C 中的参数角
2,故 sin ,cosP ,
所以可设l 的参数方程 sin cos
cos sin
xt
yt
,(t 为参数). ··························· 6 分
把 l 的参数方程代入
22
143
xy,得 2 2 2sin 3 2 sin cos cos 9 0tt ,
所以
2
12 2
cos 9= sin 3tt
. ·········································································· 8 分
则
22
12 22
cos 9 9 cos| | | | | | sin 3 sin 3PA PB t t
,
又 7| | | | = 3PA PB ,所以
2
2
9 cos 7=sin 3 3
,所以 3sin 2 ,
故
3 ,即直线l 的倾斜角为
3
. ······················································ 10 分
23.选修 :不等式选讲
本小题主要考查绝对值不等式、均值不等式等基础知识,考查运算求解能力、推理论
证能力, 考查函数与方程思想、分类与整合思想、数形结合思想,考查数学运算、逻
辑推理等核心素养,体现基础性、综合性.满分 10 分.
解法一:(1)由题意得, 12f x x x ,
①当 1x≤ 时,原不等式可化为1 +2 5xx≤ ,即 1x≥- , ···························· 1 分
故 11x ≤ ≤ . ···················································································· 2 分
②当12x时,原不等式可化为 1+2 5xx≤ ,即 xR ,
45
文科数学参考答案及评分细则 第 9 页(共 9 页)
故12x. ······················································································ 3 分
③当 2x≥ 时,原不等式可化为 1+ 2 5xx≤ ,即 x≤4 ,
故 24x≤ ≤ . ······················································································ 4 分
综上不等式的解集为 1,4 . ······························································· 5 分
(2)因为 +2 +2 2f x x a x b x a x b a b ≥ , ·························· 6 分
当且仅当 20x a x b≤ 时,取到最小值 2ab ,即 22ab. ·············· 7 分
因为 0ab ,故 22ab, 2 1 2 1
a b a b ,
所以 2 1 1 2 1 1 2 12222aba b a b a b
········································ 8 分
144 2 42
14422
ba
a
ba
ab b
≥ . ················· 9 分
当且仅当 4ba
ab ,且 ,即 11, 2ab或 11, 2ab 时,等号成立.
所以 21
ab 的最小值为 4 . ··································································· 10 分
解法二:(1)由题意得,
2 3 1
1 2 1 1 2
2 3 2
xx
f x x x x
xx
, ≤,
, < < ,
, ≥ ,
····················· 2 分
如图,直线 5y 与 y f x 的图象交于 ,AB两点,
令 2 3 5x ,解得 1x ,令 2 3 5x ,解得 4x ,………4 分
由图象知:当且仅当 14x ≤ ≤ 时, 5fx≤ 成立,
综上不等式的解集为 1,4 . ········································· 5 分
(2)因为 +2 +2 2f x x a x b x a x b a b ≥ , ························ 6 分
当且仅当 20x a x b≤ 时,取得最小值 ,即 . ·············· 7 分
因为 0ab ,故 ,因为| | 2 | | 2 2 | |a b ab ≥ ,所以 1||2ab ≤ , ········ 8 分
所以 2 1 2 2 4ab
a b ab ab
≥ , ······························································ 9 分
当且仅当| | 2 | |ab ,且 ,即 或 时,等号成立,
所以 21
ab 的最小值为 4 . ··································································· 10 分