福建省泉州市2020届高三数学(理)第一次质量检查试题(带解析及评分标准word版)
加入VIP免费下载
加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
市质检数学(理科)参考解答与评分标准 第 1页 共 12页 泉州市 2020 届普通高中毕业班第一次质量检查 理科数学试题答案及评分参考 评分说明: 1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考 查内容比照评分标准制定相应的评分细则. 2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难 度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部 分的解答有较严重的错误,就不再给分. 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分. 二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.将答案填在答题卡的相应位置。 13.2 14. 4 3 15. 3( ,0)4 , 27 4 16. 2 7( ,2]7 三、解答题:共 70 分。解答应写出文字说明,证明过程或演算步骤。第 17~21 题为必考题,每个试题考 生都必须作答。第 22、23 题为选考题,考生根据要求作答。 (一)必考题:共 60 分。 17.本小题主要考查解三角形、三角恒等变换等基础知识,考查推理论证能力和运算求解能力等,考查数 形结合思想和化归与转化思想等,体现综合性与应用性,导向对发展直观想象、逻辑推理、数学运算 及数学建模等核心素养的关注.满分 12 分. 【解析】 思路探求 1:在 Rt ABC△ 中,由已知条件求出相关的边与角,由倍角关系推导求出 ADC△ 为等边三 角形,再利用余弦定理即求出 7BD  的长度. (1)解法一: 在 Rt ABC△ 中,由 π= 6ACB∠ , 3BC  得 1AB  , π= 3BAC∠ , 2AC  ........................................................................................2 分 又 π2 = 3DAC ACB∠ ∠ , π= 3ADC∠ , 所以 ADC△ 为等边三角形,所以 2AD  .......................................................................4 分 在 ABD△ 中,由余弦定理得, 2 2 2 2 cosBD AB AD AB AD BAD     ∠ , 即 2 2 2 2π1 2 2 1 2 cos =73BD       ,解得 7BD  ..............................................6 分 思路探求 2:在 Rt ABC△ 中,由已知条件求出相关的边与角,由倍角关系推导求出 ADC△ 为等边三 角形,再由角的关系推导出 ABD△ 是直角三角形,利用勾股定理即求出 7BD  的长度.市质检数学(理科)参考解答与评分标准 第 2页 共 12页 (1)解法二:在 Rt ABC△ 中,由 π= 6ACB∠ , 3BC  得 1AB  , π= 3BAC∠ , 2AC  .........................................................................................2 分 又 π2 = 3DAC ACB∠ ∠ , π= 3ADC∠ , 所以 ADC△ 为等边三角形,所以 2CD  , π= 3 ∠ACD ,.............................................4 分 因为 π= 6 ∠ACB ,所以 π π π= + = 3 6 2 ∠BCD ACB ACD    ; 在 ABD△ 中,由勾股定理得 2 2 2 2 23 +2 =7( )BD CB CD   ,解得 7BD  .....6 分 思路探求 1:由题目已知条件 2DAC ACB∠ ∠ ,可将所要的角转化到 ACD△ 中,再将 AC 用 Rt ABC△ 中边角来表示,利用正弦定理及三角恒等变换求解即可得. (2)解法一: 设 =ACB ∠ , AB x , 则 2DAC ∠ , 3DC x ......................................................................7 分 在 Rt ABC△ 中, = sin sin AB xAC   ,......................................................8 分 在 ACD△ 中,根据正弦定理得, sin sin DC AC DAC ADC ∠ ∠ , 即 3 sin πsin2 sin 3 x x    ,......................................................................10 分 π3 sin sin23 sin xx     , 33 2sin cos2 sin xx      ..........................11 分 解得 3cos 4   ,即 3cos = 4ACB∠ .......................................................................12 分 思路探求 2:由题目已知条件 2DAC ACB∠ ∠ ,可将所要的角转化到 ACD△ 中,利用正弦定理求市质检数学(理科)参考解答与评分标准 第 3页 共 12页 出 AC ,再将 AC 用 Rt ABC△ 中边角来表示,最后再由等量代换求解即可得. (2)解法二 设 =ACB ∠ , AB x , 则 2DAC ∠ , 3DC x .......................................................................7 分 在 ACD△ 中,根据正弦定理得, sin sin DC AC DAC ADC ∠ ∠ , 即 3 πsin 2 sin 3 x AC   得 θθ x θ x AC cossin4 3 2sin 2 3  ........................................9 分 在 Rt ABC△ 中, = sin sin AB xAC   .............................................................10 分 所以 θ x θθ x sincossin4 3  ,.............................................................................11 分 解得 4 3cos θ 即 3cos = 4ACB∠ .....................................................................12 分 思路探求 3:作辅助线,过点 C 作 ADCE  于点 E ,构造两个直角三角形,将 AC 用边角来表示, 再将 AC 用 Rt ABC△ 中边角来表示,最后再由等量代换求解即可得. (2)解法三 过点 C 作 ADCE  于点 E 设 =ACB ∠ , AB x , 则 2DAC ∠ , 3DC x ........................................................................7 分 在 △Rt CDE 中, xxDDCCE 2 3 3sin3sin  ;.........................................8 分 在 △Rt ACE 中, θθ x θ x CAE CEAC cossin4 3 2sin2 3 sin  ...................................9 分 在 Rt ABC△ 中, = sin sin AB xAC   .........................................10 分 所以 θ x θθ x sincossin4 3  ,.........................................................11 分 解得 4 3cos θ 即 3cos = 4ACB∠ .................................................12 分市质检数学(理科)参考解答与评分标准 第 4页 共 12页 18.本小题考查线面垂直的判定与性质、二面角的求解及空间向量的坐标运算等基础知识,考查空间想象 能力、推理论证及运算求解能力,考查化归与转化思想、数形结合思想等,体现基础性、综合性与应 用性,导向对发展数学抽象、逻辑推理、直观想象等核心素养的关注.满分 12 分. 解:解法一:(1)依题意知,因为CD BE^ ,所以 PE BE^ ,·················································1 分 当平面 PBE ^ 平面 ABED 时, 平面 PBE  平面 ABCD BE= , PE Ì 平面 PBE , 所以 PE ^ 平面 ABCD ,··········································································· 2 分 因为 AB 平面 ABCD ,所以 PE AB^ ,······················································ 3 分 由已知, BCDD 是等边三角形,且 E 为CD 的中点, 所以 BE CD^ , CDAB // ,所以 AB BE^ , ·············································4 分 又 PE BE E = ,所以 AB ^ 平面 PBE ,·····················································5 分 又 AB Ì 平面 PAB ,所以平面 PAB ^ 平面 PBE . ········································· (2)以 E 为原点,分别以 ED , EB , EP 的方向为 x 轴, y 轴, z 轴的正方向,建立空间直角坐标系 xyzE  , 则 )0,0,0(E , )1,0,0(P , )0,3,0(B , )0,3,2(A , )1,0,0(EP , )0,3,2(EA , )0,0,2(BA , )1,3,2( PA ,······················································································· 7 分 设平面 PAB 的一个法向量 )(m 111 z,y,x ,平面 PAE 的一个法向量 )(n 222 z,y,x 由      0 0 mPA mBA 得      03 0 111 1 zy2x 2x ;令 11 y ,解得 31 z , 01 x , 所以 )30,1,(m ,·····················································································8 分 由      0 0 nEA nEP 得      03 0 22 2 y2x z ;令 22 y ,解得 32 x , 02 z ,市质检数学(理科)参考解答与评分标准 第 5页 共 12页 所以 ( 3,-2,0)n  , ·················································································9 分 2 2 2 2 2 2 0 2 0 2 7cos , .72 70 1 ( 3) ( 3) ( 2) 0 m nm n m n                     ···· 11 分 易得所求二面角为锐角,所以二面角的余弦值为 7 7 .······································· 12 分 解法二:(1)同解法一 (2)由(1)知 PE  平面 ABCD ,且 PE  平面 PAE , 所以平面 PAE  平面 ABCD . 在 ABE 中,作 BF AE ,垂足 F . 因为平面 PAE  平面 ABCD AE ,BF  平面 ABCD , 所以 BF  平面 PAE . ············································· 7 分 所以 BF AP . 因为 BP BC AB  ,所以 ABP 是等腰三角形. 取 AP 的中点G ,并连接 FG , BG ,则 BG AP . ····························8 分 又 BF BG B ,所以 AP  平面 BFG . 所以 BGF 为二面角 EPAB  的平面角. ·····································9 分 在 RT ABE 中, 2AB  , 3BE  , 7AE  所以 2 3 2 21 77 BF   . ·10 分 同理,在 RT ABP 中, 2AB BP  , 2 2AP  ,所以 2BG  . ··· 11 分 在 RT BFG 中, 14 7GF  ,所以 7cos 7 FGBGF BG    . 所以二面角 EPAB  的余弦值为 7 7 . ············································· 12 分 19.本小题主要考查椭圆的几何性质、直线与椭圆的位置关系等基础知识,考查推理论证能力、运算求解 能力等,考查化归与转化思想、数形结合思想、函数与方程思想等,体现基础性、综合性与创新性, 导向对发展逻辑推理、直观想象、数学运算、数学建模等核心素养的关注.满分 12 分. 解法一:(1)由己知得 2 2 1a b  ,······················································································1 分 因点 3(1, )2P 在椭圆上,所以 2 2 1 9 14a b   ···························································· 2 分 所以 2 24, 3a b  ···························································································3 分 所以椭圆 的方程为: 2 2 14 3 x y  ······································································ 4 分市质检数学(理科)参考解答与评分标准 第 6页 共 12页 (2)设直线l 的方程为 1 2y x t  , ············································································5 分 联立 2 2 1 2 14 3 y x t x y       ,消去 y 得 2 2 3 0x tx t    , ·············································· 7 分 在   时, 1 2x x t   , 1 2 2 3x x t  ······························································8 分 由 1 2 1 23 4 0x x y y  ,即 1 2 1 2 1 13 4 02 2x x x t x t          , 所以   2 1 2 1 22 2 0x x t x x t    (*). ·······························································9 分 将 1 2x x t   , 1 2 2 3x x t  代入(*)式,解得 2 2t  ,·····································10 分 由于圆心 O 到直线l 的距离为 2 2 2 5 5 td   ,···················································11 分 所以直线l 被圆O 截得的弦长为 2 8 4 152 4 2 4 5 5l d     .···························12 分 解法二:(1) 2 2 2 23 32 (1 1) ( 0) (1 1) ( 0) 42 2a          ,所以 2a  ································· 2 分 所以 2 2 2c 4 1 3b a     ·············································································· 3 分 所以椭圆 的方程为: 2 2 14 3 x y  ······································································ 4 分 (2)同解法一. ····································································································12 分 20.本小题主要考查等高条形图、独立性检验、分布列与期望等基础知识,考查数据处理能力、运算求解 能力、应用意识等,考查统计与概率思想等,考查数学抽象、数学建模、数据分析等核心素养,体现 基础性、综合性与应用性. 解:(1)根据所给等高条形图,得列联表: A 材料 B 材料 合计 成功 45 30 75 不成功 5 20 25 合计 50 50 100 A 材料或 B 材料的数据对,给 1 分,全对 2 分市质检数学(理科)参考解答与评分标准 第 7页 共 12页 ································································································································ 2 分 2K 的观测值 2100 (45 20 5 30) =1250 50 75 25       k ,························································· 4 分 由于12 6.635 , 故有 99%的把握认为试验成功与材料有关.································································5 分 (2)生产 1 吨的石墨烯发热膜,所需的修复费用为 X 万元.······································6 分 易知 X 可取 0,0.1,0.2,0.3,0.4,0.5.······························································· 7 分   2 0 2 1 2 20 =2 3 12P X C       ,   2 1 2 1 2 40.1 =2 3 12P X C       ,   2 2 2 1 2 20.2 =2 3 12P X C       ,   2 0 2 1 1 10.3 =2 3 12P X C       ,   2 1 2 1 1 20.4 =2 3 12P X C       ,   2 2 2 1 1 10.5 =2 3 12P X C       ,··························9 分 则 X 的分布列为: X 0 0.1 0.2 0.3 0.4 0.5 P 1 6 1 3 1 6 1 12 1 6 1 12 修复费用的期望:   1 1 1 1 1 10 0.1 0.2 0.3 0.4 0.5 0.26 3 6 12 6 12E X              . 11 分 所以石墨烯发热膜的定价至少为 0.2+1+1=2.2 万元/吨,才能实现预期的利润目标.······· 12 分 21.本小题主要考查导数的综合应用,利用导数研究函数的单调性、最值和零点等问题,考查抽象概括、 推理论证、运算求解能力,考查应用意识与创新意识,综合考查化归与转化思想、分类与整合思想、 函数与方程思想、数形结合思想、有限与无限思想以及特殊与一般思想,考查数学抽象、逻辑推理、 直观想象、数学运算、数学建模等核心素养.满分 12 分. 解:(1)当 0a 时,   2cos  xexf x ,········································································ 1 分 记    xfxg  ,则   xexg x sin , 当 0x 时, 1sin1,1  xex , 所以   0sin  xexg x ,  xg 在  ,0 单调递增,··············································· 2 分 列式 1 分,结果 1 分 最后回答对,无大小比较,不扣分 单位:元,0,1000,2000…也可 22000 元/吨,也可 列式 1 分,结果 1 分 分布列没写,不扣分 概率值没化简不扣分 对 1-3 个,1 分 全对,2 分市质检数学(理科)参考解答与评分标准 第 8页 共 12页 所以     00  gxg , 因为     0 xgxf ,所以  xf 在  ,0 为增函数;···············································3 分 当 0x 时, 1cos1,1  xex ,所以   02-cos  xexf x , 所以  xf 在  ,0 为减函数.················································································· 4 分 综上所述,  xf 的递增区间为  ,0 ,递减区间为  ,0 .······································· 5 分 (2)由题意可得   22cos  axxexf x ,   00 f . 记    xfxg  ,则   axexg x 2-sin . 再令       xexhxgxh x cos,  则 . 下面证明   xexh x cos 在      0,2  有零点: 令       xexxhx x sin,   则 在      0,2  是增函数,所以    02       x . 又   00,02       , ,···················································································· 6 分 所以存在   0,0,2 11      xx  ,且当       00,,0,,2 11      xxxxxx  , , 所以    xhx ,即 在  为增函数为减函数,在 0,,2 11 xx       , 又   00,02      hh  ,所以   01  xh , 根据零点存在性定理,存在   0,,2 010      xhxx  ················································7 分 所以当     ,0,0,0  xhxx 又   0cos,0  xexhx x ,市质检数学(理科)参考解答与评分标准 第 9页 共 12页 所以  ,xh 即   axexg x 2-sin 在  0,0x 单调递减,在  ,0 单调递增, 所以     aaegxg 212-0sin0 0  .····························································· 8 分 ①当 2 1021  aa , ,   0 xg 恒成立,所以    xfxg ,即 为增函数, 又   00 f ,所以当     ,0,0,0  xfxx  xf 为减函数,     ,0,0  xfx ,  xf 为增 函数, 0x 是  xf 的极小值点,所以 2 1a 满足题意.············································10 分 ②当 2 1a ,   ,02-10  ag 令 0,1)(  xxexu x 因为 0x ,所以 01)(  xexu , 故 )(xu 在 ),0(  单调递增,故 0)0()(  uxu ,即有 1 xex 故   022sin1222sin2 2  aaaaaeag a , 又   axexg x 2-sin 在  ,0 单调递增, 由零点存在性定理知,存在唯一实数     ,0,0  mgm , 11 分 当     ,0,,0  xgmx  xg 单调递减,即  xf  递减, 所以     00  fxf , 此时  xf 在  m,0 为减函数,所以     00  fxf ,不合题意,应舍去. 综上所述, a 的取值范围是 2 1a .········································································12 分 (二)选考题:共 10 分。请考生在第 22、23 题中任选一题作答,如果多做,则按所做的第一题计分。 22.选修 4 4 :坐标系与参数方程 本小题主要考查圆的直角坐标方程与极坐标方程的互化,直线的参数方程及参数的几何意义、直线与 圆的位置关系等基础知识,考查推理论证能力与运算求解能力,考查函数与方程思想、转化与化归思 想、数形结合思想,体现基础性与综合性,导向对发展直观想象、逻辑推理、数学运算等核心素养的 关注.满分 10 分. 解:(1)因为 , 4 3 x t y t    ,所以l 的普通方程为 3 4 0x y   ,···········································1 分 又 2 2 2cos , sin ,x y x y        , l 的极坐标方程为 3 cos sin 4 0      ,·························································· 3 分市质检数学(理科)参考解答与评分标准 第 10页 共 12页 C 的方程即为 2 2 2 0x y y   ,对应极坐标方程为 2sin  . ································· 5 分 (2)由己知设 1 2( , ), ( , )A B    ,则 1 4 , 3 cos sin      2 2sin  , ······················· 6 分 所以, || || OA OB 2 1 | | 1 12sin ( 3 cos sin ) [ 3sin 2 cos2 1]| | 4 4 OA OB             ·················7 分 1[2sin(2 ) 1]4 6    ······························································· 8 分 又 5 6 12    , 226 6 3      , 当 2 6 6     ,即 6   时, || || OA OB 取得最小值 1 2 ;················································· 9 分 当 2 6 2     ,即 3   时, || || OA OB 取得最大值 3 4 .················································10 分 所以, || || OA OB 的取值范围为 1 3[ , ]2 4 .········································································ 10 分 23.选修 4 5 :不等式选讲 本小题主要考查绝对值不等式的解法、不等式解集的概念、绝对值的意义等基础知识,考查抽象概括 能力、运算求解能力,考查分类与整合的思想,转化与化归的思想,体现基础性与综合性,导向对发 展逻辑运算、数学运算、直观想象等核心素养的关注.满分 10 分. 解法一 :(1)               .2 1,2 13 2 1 2 1,2 3 2 1,2 13 xx xx xx xf , , ·········································································· 2 分 当 2 1x 时,   22 1      fxf , 当 2 1 2 1  x ,   12 1      fxf , 当 2 1x 时,   12 1      fxf ,········································································4 分 所以   1min  xfm ·························································································5 分 对 1 个给 1 分,全对 2 分 对 1 个给 1 分,全对 2 分市质检数学(理科)参考解答与评分标准 第 11页 共 12页 补充:解法二 :(1)               .2 1,2 13 2 1 2 1,2 3 2 1,2 13 xx xx xx xf , , ································································· 2 分 如图··································································································4 分 当 1 2x  时,   1min  xfm ·································································5 分 解法三 :(1) 1 1 1 1 1 1( ) 2 2 2 2 2 2                     ≥f x x x x x x x ································1 分 11 12    ≥x ························································································2 分 当且仅当 1 1 02 2 1 =02           ≤x x x 即 1= 2x 时,等号成立. ········································· 4 分 (列式 1 分,x 值 1 分,或直接给出 x 值,2 分) 当 1 2x  时,   1min  xfm ··········································································· 5 分 解法一:(2)由题意可知, baccabcab 111  ,·····························································6 分 因为 0, 0, 0  a b c , 所以要证明不等式 9ab bc ca a b c      , 只需证明   9111  cbabac )( ,·································································7 分 因为   9313111 33  abcabccbabac )( 成立,·········································· 9 分 所以原不等式成立.························································································· 10 分 两个基本不等式各 1 分 对 1 个给 1 分,全对 2 分市质检数学(理科)参考解答与评分标准 第 12页 共 12页 解法二:(2)因为 03,0,0,0 3 222  cbacabcabcba 所以 ,······································ 6 分 033  abccba ,·················································································· 7 分 又因为 1abc , 所以    933 3 2223  cbaabcacbcabcba ,········································· 8 分    9    ≥ab bc ac a b c ············································································ 9 分 所以 9ab bc ca a b c      ,原不等式得证.····················································· 10 分 补充:解法三:(2)由题意可知, baccabcab 111  ,····················································6 分 因为 0, 0, 0  a b c , 所以要证明不等式 9ab bc ca a b c      , 只需证明  1 1 1 9       ≥a b ca b c ,······················································ 7 分 由柯西不等式得:   21 1 1 1 1 1+ + 9               ≥a b c a b ca b c a b c 成 立,·····································································································9 分 所以原不等式成立.················································································ 10 分 柯西 2 分 踩空回补

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料