第十八章 平行四边形
导入新课
讲授新课
当堂练习
课堂小结
18.2.1
矩 形
第
2
课时 矩形的判定
学习目标
1.
经历矩形判定定理的猜想与证明过程,
理解并掌握
矩形的判定定理.(重点)
2.
能应用矩形的判定解决简单的证明题和计算题
.(
难点
)
复习引入
导入新课
问题
1
矩形的定义是什么?
有一个角是直角的平行四边形叫做矩形
.
问题
2
矩形有哪些性质?
矩形
边:
角:
对角线:
对边平行且相等
四个角都是直角
对角线互相平分且相等
思考
工人师傅在做门窗或矩形零件时
,如何确保
图形是
矩形呢?现在师傅带了两种工具
(卷尺和量角器),他说用这两种工具的任意一种就可以解决问题,这是为什么呢?
这节课我们一起探讨矩形的判定吧
.
讲授新课
对角线相等的平行四边形是矩形
一
类比平行四边形的定义也是判定平行四边形的一种方法,那么矩形的定义也是判定矩形的一种方法
.
问题
1
除了定义以外,判定矩形的方法还有没有呢?
矩形是特殊的平行四边形
.
类似地,那我们研究矩形的性质的逆命题是否成立
.
问题
2
上节课我们已经知道
“
矩形的对角线相等
”
,反过来,
小明猜想对角线相等的四边形是矩形,你觉得对吗?
我猜想:对角线相等的平行四边形是矩形
.
不对,等腰梯形的对角线也相等
.
不对,矩形是特殊的平行四边形,所以它的对角线不仅相等且平分
.
思考
你能证明这一猜想吗?
已知:如图
,
在
□
ABCD
中
,
AC
,
DB
是它的两条对角线
,
AC
=
DB
.
求证:
□
ABCD
是矩形
.
证明:∵
AB
=
DC
,
BC
=
CB
,
AC
=
DB
,
∴ △
ABC
≌
△
DCB
,
∴∠
ABC
= ∠
DCB
.
∵
AB
∥
CD
,
∴∠
ABC
+ ∠
DCB
= 180°
,
∴ ∠
ABC
= 90°
,
∴
□
ABCD
是矩形(矩形的定义)
.
A
B
C
D
证一证
矩形的判定定理:
对角线相等的平行四边形是矩形
.
归纳总结
几何语言描述:
在平行四边形
ABCD
中,
∵
AC
=
BD
,
∴
平行
四边形
ABCD
是矩形
.
A
B
C
D
思考
数学来源于生活,事实上工人师傅为了检验
两组对边相等
的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果
对角线长相等
,则窗框一定是矩形,你现在知道为什么了吗?
对角线相等的平行四边形是矩形
.
例
1
如图,在
ABCD
中,对角线
AC
,
BD
相交于点
O
,且
OA
=
OD
,∠
OAD
=50°
.求∠
OAB
的度数.
A
B
C
D
O
解:
∵
四边形
ABCD
是平行四边形,
∴
OA
=
OC
=
AC
,
OB
=
OD
=
BD
.
又
∵
OA
=
OD
,
∴
AC
=
BD
,
∴
四边形
ABCD
是矩形,
∴
∠
BAD=
90
°
.
又
∵
∠
OAD
=50°
,
∴
∠
OAB
=40°.
典例精析
例
2
如图
,
矩形
ABCD
的对角线
AC
、
BD
相交于点
O
,
E
、
F
、
G
、
H
分别是
AO
、
BO
、
CO
、
DO
上的一点
,
且
AE
=
BF
=
CG
=
DH
.
求证
:
四边形
EFGH
是矩形
.
B
C
D
E
F
G
H
O
A
证明:
∵
四边形
ABCD
是矩形,
∴
AC
=
BD
(矩形的对角线相等
)
,
AO
=
BO
=
CO
=
DO
(矩形的对角线互相平分),
∵
AE
=
BF
=
CG
=
DH
,
∴
OE
=
OF
=
OG
=
OH
,
∴
四边形
EFGH
是平行四边形,
∵
EO
+
OG
=
FO
+
OH
,
即
EG
=
FH
,
∴
四边形
EFGH
是矩形
.
练一练
1.
如图,在▱
ABCD
中,
AC
和
BD
相交于点
O
,则下面条件能判定▱
ABCD
是矩形的是 ( )
A.
AC
=
BD
B.
AC
=
BC
C.
AD
=
BC
D.
AB
=
AD
A
2.
如图
ABCD
中
, ∠1= ∠2
中
.
此时四边形
ABCD
是矩形吗?为什么?
A
B
C
D
O
1
2
解:四边形
ABCD
是矩形
.
理由如下:
∵
四边形
ABCD
是平行四边形
∴
AO
=
CO
,
DO
=
BO
.
又
∵ ∠1= ∠2
,
∴
AO
=
BO
,
∴
AC
=
BD
,
∴
四边形
ABCD
是矩形
.
有三个角是直角的四边形是矩形
二
问题
1
上节课我们研究了矩形的四个角,知道它们都是直角,它的逆命题是什么?成立吗?
逆命题:四个角是直角的四边形是矩形
.
成立
问题
2
至少有几个角是直角的四边形是矩形
?
A
B
D
C
(
有一个角是直角
)
A
B
D
C
(
有二个角是直角
)
A
B
D
C
(
有三个角是直角
)
猜测:有三个角是直角的四边形是矩形
.
已知:如图
,
在四边形
ABCD
中
,∠
A
=∠
B
=∠
C
=90
°
.
求证:四边形
ABCD
是矩形
.
证明
:∵ ∠
A
=∠
B
=∠
C
=90
°
,
∴∠
A
+∠
B
=180
°
,
∠
B
+∠
C
=180
°
,
∴
AD∥BC
,
AB∥CD
.
∴
四边形
ABCD
是平行四边形,
∴
四边形
ABCD
是矩形
.
A
B
C
D
证一证
矩形的判定定理:
有三个角是直角的四边形是矩形
.
归纳总结
几何语言描述:
在四边形
ABCD
中,
∵
∠
A
=∠
B
=∠
C
=90
°
,
∴
四边形
ABCD
是矩形
.
A
B
C
D
思考
一个木匠要制作矩形的踏板.他在一个对边平行的长木板上分别沿与长边垂直的方向锯了两次,就能得到矩形踏板.为什么?
有三个角是直角的四边形是矩形
.
例
3
如图,
□
ABCD
的四个内角的平分线分别相交于
E
、
F
、
G
、
H
,求证:四边形
EFGH
为矩形.
证明:在
□
ABCD
中,
AD∥BC
,
∴∠
DAB
+∠
ABC
=180
°
.
∵
AE
与
BG
分别为∠
DAB
、
∠
ABC
的平分线
,
A
B
D
C
H
E
F
G
∴四边形
EFGH
是矩形.
同理可证
∠
AED
=
∠
EHG
=90°,
∴∠
AFB
=90°
,
∴∠
GFE
=90°.
∴ ∠
BAE
+ ∠
ABF
=
∠
DAB
+
∠
ABC
=90
°
.
例
4
如图,在
△
ABC
中,
AB
=
AC
,
AD
⊥
BC
,垂足为
D
,
AN
是
△
ABC
外角
∠
CAM
的平分线,
CE
⊥
AN
,垂足为
E
,求证:四边形
ADCE
为矩形.
证明:在
△
ABC
中,
AB
=
AC
,
AD
⊥
BC
,
∴∠
BAD
=
∠
DAC
,即
∠
DAC
=
∠
BAC
.
又
∵
AN
是
△
ABC
外角
∠
CAM
的平分线,
∴∠
MAE
=
∠
CAE
=
∠
CAM
,
∴∠
DAE
=
∠
DAC
+
∠
CAE
=
(∠
BAC
+
∠
CAM
)
=
90°.
又
∵
AD
⊥
BC
,
CE
⊥
AN
,
∴∠
ADC
=
∠
CEA
=
90°,
∴
四边形
ADCE
为矩形.
练一练
在判断“一个四边形门框是否为矩形”的数学活动课上,一个合作学习小组的4位同学分别拟定了如下的方案,其中正确的是 ( )
A.测量对角线是否相等
B.测量两组对边是否分别相等
C.测量一组对角是否都为直角
D.测量其中三个角是否都为直角
D
当堂练习
1.
下列各句判定矩形的说法是否正确?
(
1
)对角线相等的四边形是矩形;
(
2
)对角线互相平分且相等的四边形是矩形;
(
3
)有一个角是直角的四边形是矩形;
(
5
)有三个角是直角的四边形是矩形;
(
6
)四个角都相等的四边形是矩形;
(
7
)对角线相等,且有一个角是直角的四边形是矩形;
(
4
)有三个角都相等的四边形是矩形
;
×
×
×
×
√
√
√
√
(
8
)一组对角互补的平行四边形是矩形
.
2.
如图
,
直线
EF∥MN
,
PQ
交
EF
、
MN
于
A
、
C
两点
,
AB
、
CB
、
CD
、
AD
分别是
∠
EAC
、
∠
MCA
、
∠
ACN
、
∠
CAF
的平分线
,
则四边形
ABCD
是
( )
A.
梯
形
B.
平行四边形
C.
矩形
D.
不能确定
D
E
F
M
N
Q
P
A
B
C
C
3.
如图,在四边形
ABCD
中,
AB
∥
CD
,∠
BAD
=90°,
AB
=5,
BC
=12,
AC
=13.求证:四边形
ABCD
是矩形.
证明:四边形
ABCD
中,
AB
∥
CD
,∠
BAD
=90°,
∴∠
ADC
=90°
.
又∵△
ABC
中,
AB
=5,
BC
=12,
AC
=13,
满足13
2
=5
2
+12
2
,即
∴△
ABC
是直角三角形,且∠
B
=90°,
∴四边形
ABCD
是矩形.
A
B
C
D
4.
如图,平行四边形
ABCD
中,对角线
AC
、
BD
相交于点
O
,延长
OA
到
N
,使
ON
=
OB
,再延长
OC
至
M
,使
CM
=
AN
.
求证:四边形
NDMB
为矩形.
证明:
∵
四边形
ABCD
为平行四边形,
∴
AO
=
OC
,
OD
=
OB
.
∵
AN
=
CM
,
ON
=
OB
,
∴
ON
=
OM
=
OD
=
OB
,
∴
四边形
NDMB
为平行四边形,
MN
=
BD
,
∴
平行四边形
NDMB
为矩形.
5.
如图,
△
ABC
中,
AB
=
AC
,
AD
是
BC
边上的高,
AE
是
△
BAC
的外角平分线,
DE
∥
AB
交
AE
于点
E
,求证:四边形
ADCE
是矩形.
证明:
∵
AB
=
AC
,
AD
⊥
BC
,
∴∠
B
=
∠
ACB
,
BD
=
DC
.
∵
AE
是
∠
BAC
的外角平分线,
∴∠
FAE
=
∠
EAC
.
∵∠
B
+
∠
ACB
=
∠
FAE
+
∠
EAC
,
∴∠
B
=
∠
ACB
=
∠
FAE
=
∠
EAC
,
∴
AE
∥
CD
.
又
∵
DE
∥
AB
,
∴
四边形
AEDB
是平行四边形,
∴
AE
平行且相等
BD
.
又
∵
BD
=
DC
,
∴
AE
平行且等于
DC
,
故四边形
ADCE
是平行四边形
.
又
∵∠
ADC
=
90°
,
∴
平行四边形
ADCE
是矩形.
6.
如图,在梯形
ABCD
中,
AD
∥
BC
,
∠
B
=
90°
,
AD
=
24cm
,
BC
=
26cm
,动点
P
从点
A
出发沿
AD
方向向点
D
以
1cm/s
的速度运动,动点
Q
从点
C
开始沿着
CB
方向向点
B
以
3cm/s
的速度运动.点
P
、
Q
分别从点
A
和点
C
同时出发,当其中一点到达端点时,另一点随之停止运动.
(1)经过多长时间,四边形
PQCD
是平行四边形?
解:设经过
x
s
,四边形
PQCD
为平行四边形,
即
PD
=
CQ
,
所以
24
-
x
=
3
x
,
解得
x
=
6.
即经过
6s
,四边形
PQCD
是平行四边形;
能力提升:
(2)经过多长时间,四边形
PQBA
是矩形?
解:设经过
y
s
,四边形
PQBA
为矩形,
即
AP
=
BQ
,
∴
y
=
26
-
3
y
,
解得
y
=
6.5
,
即经过
6.5s
,四边形
PQBA
是矩形.
课堂小结
有一个角是直角的平行四边形是矩形
.
对角线相等的平行四边形是矩形
.
有三个角是直角的四边形是矩形
.
运用定理进行计算和证明
矩形的判定
定义
判定定理