2018年九年级数学上第25章概率初步小结与复习(人教版)
加入VIP免费下载

本文件来自资料包: 《2018年九年级数学上第25章概率初步小结与复习(人教版)》 共有 2 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
小结与复习 第 25 章 概率初步 要点梳理 考点讲练 课堂小结 课后作业 一、事件的分类及其概念 要点梳理 事件 确定事件 随机事件 必然事件 不可能事件   1. 在一定条件下 必然发生 的事件,叫做必然事件;   2. 在一定条件下 不可能发生 的事件,叫做不可能事件;   3. 在一定条件下 可能发生也可能不发生 的事件,叫做随 机事件 . 1. 概率: 一般地,对于一个随机事件 A ,我们把刻画其发生可能性大小的数值,称为随机事件 A 发生的 概率 ,记作 P ( A ) . 二、 概率的概念 0 1 事件发生的可能性越来越大 事件发生的可能性越来越小 不可能事件 必然事件 概率的值 2. 三、随机事件的概率的求法 1. ①当实验的所有结果不是有限个,或各种可能结果发生的可能性不相等时,我们用大量重复试验中随机事件发生的稳定 频率来估计概率 . ② 频率与概率的关系 :两者都能定量地反映随机事件 可能性的大小,但频率具有随机性,概率是自身固有 的性质,不具有随机性 . 2. 概率的计算公式: 一般地,如果在一次试验中,有 n 种可能的结果,并且它们发生的可能性都相等,那么出现每一种结果的概率都是 . 如果事件 A 包括其中的 m 种可能的结果,那么事件 A 发生的概率 P ( A )= + + … + n 1 n 1 n 1 m 个 = n m 当一次试验要涉及两个因素 , 并且可能出现的结果数目较多时 , 为了不重不漏的列出所有可能的结果 , 通常采用 列表法 . 一个因素所包含的可能情况 另一个因素所包含的可能情况 两个因素所组合的所有可能情况 , 即 n 在所有可能情况 n 中 , 再找到满足条件的事件的个数 m, 最后代入公式计算 . 列表法中表格构造特点 : 当一次试验中涉及 3 个因素 或 更多的因素 时 , 怎么办 ? 四、列表法 当一次试验中涉及 2 个因素或更多的因素时 , 为了不重不漏地列出所有可能的结果 , 通常采用“ 树状图 ” . 树形图的画法 : 一个试验 第一个因数 第二个 第三个 如一个试验中涉及 2 个或 3 个因数 , 第一个因数中有 2 种可能情况 ; 第二个因数中有 3 种可能的情况 ; 第三个因数中有 2 种可能的情况 . A B 1 2 3 1 2 3 a b a b a b a b a b a b n=2×3×2=12 五、树状图法 考点一 事件的判断和概率的意义 考点讲练 例 1 下列事件是随机事件的是( ) A. 明天太阳从东方升起 B. 任意画一个三角形,其内角和是 360° C. 通常温度降到 0℃ 以下,纯净的水结冰 D. 射击运动员射击一次,命中靶心 D 1.“闭上眼睛从布袋中随机地摸出1个球,恰是红球的概率是 ” 的意思是 ( ) A.布袋中有2个红球和5个其他颜色的球 B.如果摸球次数很多,那么平均每摸7次,就有2次摸中红球 C.摸7次,就有2次摸中红球 D.摸7次,就有5次摸不中红球 B 针对训练 2. 下列事件中是必然事件的是(  ) A . 从一个装有蓝、白两色球的缸里摸出一个球,摸出的球是白球 B . 小丹的自行车轮胎被钉子扎坏 C . 小红期末考试数学成绩一定得满 分 D . 将油滴入水中,油会浮在水面上 D 考点二 用列举法求概率 例 2 如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是( ) A. B. C. D. C 例 3 如图所示,有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b. (1)写出k为负数的概率; (2)求一次函数 y=kx+b 的图象经过 二、三、四象限的概率 . 解:( 1 )P(k为负数)= . 【 解析 】 (1)因为- 1 ,- 2 ,3中有两个负数,故k为负数的概率为 ; (2)由于一次函数 y=kx+b 的图象经过二、三、四象限时, k , b 均为负数, 所以在画树形图列举出 k 、 b 取值的所有情况后,从中找出所有k、b均为负数的情况,即可得出答案. ( 2 )画树状图如右: 由树状图可知, k 、 b 的取值共有 6 种情况, 其中 k < 0 且 b < 0 的情况有 2 种, ∴P (一次函数 y=kx+b 的图象经过第二、三、四象限) = . 3. 一个袋中装有2个黑球3个白球,这些球除颜色外,大小、形状、质地完全相同,在看不到球的情况下,随机的从这个袋子中摸出一个球不放回,再随机的从这个袋子中摸出一个球,两次摸到的球颜色相同的概率是(  ) A. B. C. D. A 针对训练 考点三 用频率估计概率 例 4 在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( ) A . 频率就是概率 B . 频率与试验次数无关 C . 概率是随机的,与频率无关 D . 随着试验次数的增加,频率一般会越来越接近概率 D 例 5 在一个不透明的布袋中,红色、黑色、白色的玻璃球共有 40 个,除颜色外其他完全相同,小明通过多次摸球试验后发现从中摸到红色球、黑色球的频率稳定在 15 % 和 45 %, 则口袋中白色球的个数最有可能是( ) A.24 个 B.18 个 C.16 个 D.6 个 C 4. 在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球.如果口袋中装有3个红球且摸到红球的概率为 ,那么口袋中球的总个数为_____. 解析:设口袋中球的总个数为 x , 则摸到红球的概率为 , 所以 x= 15 . 针对训练 15 考点五 用概率作决策 例 6 在一个不透明的口袋里分别标注 2 、 4 、 6 的 3 个小球(小球除数字外,其余都相同),另有 3 张背面完全一样,正面分别写有数字 6 、 7 、 8 的卡片 . 现从口袋中任意摸出一个小球,再从这 3 张背面朝上的卡片中任意摸出一张卡片 . ( 1 )请你用列表或画树状图的方法,表示出所有可能出现的结果; 解: ( 1 ) 列表如下 6 7 8 2 ( 6 , 2 ) ( 7 , 2 ) ( 8 , 2 ) 4 ( 6 , 4 ) ( 7 , 4 ) ( 8 , 4 ) 6 ( 6 , 6 ) ( 7 , 6 ) ( 8 , 6 ) 卡片 小球 共有 9 种等可能结果; ( 2 )小红和小莉做游戏,制定了两个游戏规则: 规则 1 :若两次摸出的数字,至少有一次是“ 6 ”,小红赢;否则,小莉赢; 规则 2 : 若摸出的卡片上的数字是球上数字的整数倍时,小红赢;否则,小莉赢 . 小红想要在游戏中获胜,她会选择哪一条规则,并说明理由 . 规则 1 : P ( 小红赢 ) = ; 规则 2 : P ( 小红赢 ) = ∵ , ∴小红选择规则 1. 5.A 、 B 两个小型超市举行有奖促销活动,顾客每购满 20 元就有一次按下面规则转动转盘获奖机会,且两超市奖额等同 . 规则是: ① A 超市把转盘甲等分成 4 个扇形区域、 B 超市把转盘乙等分成 3 个扇形区域,并标上了数字(如图所示); ②顾客第一回转动转盘要转两次,第一次与第二次分别停止 后指针所指数字之和为奇数时 就获奖(若指针停在等分线上, 那么重转一次,直到指针指向 某一份为止) . 1 1 2 2 3 3 4 甲 乙 针对训练 解:( 1 )列表格如下: 1 2 3 4 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 4 5 6 7 8 第一回 第二回 甲转盘 共有 16 种等可能结果,其中中奖的有 8 种; ∴ P ( 甲) = ( 1 )利用树形图或列表法分别求出 A 、 B 两超市顾客一回转盘获奖的概率; 1 2 3 1 2 3 4 2 3 4 5 3 4 5 6 第一回 第二回 乙转盘 ∴ P ( 乙) = 共有 9 种等可能结果,其中中奖的有 4 种; ( 2 )如果只考虑中奖因素,你将会选择去哪个超市购物?说明理由 . ( 2 ) 选甲超市 . 理由如下: ∵ P ( 甲) > P ( 乙), ∴选甲超市 . 课堂小结 概率初步 随机事件与概率 事件 必然事件 不可能事件 随机事件 概率 定义 刻画随机事件发生可能性大小的数值 计算公式 列举法求概率 直接列举法 列表法 画树状图法 适合于两个试验因素或分两步进行 适合于三个试验因素或分三步进行 用频率估计概率 频率与概率的关系 在大量重复试验中,频率具有 稳定性时才可以用来估计概率 见 《 学练优 》 本课时练习 课后作业

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料