第二课时 集合的表示
[
目标导航
]
课标要求
1.
掌握集合的两种常用表示方法
(
列举法和描述法
).
2.
通过实例能选择自然语言、图形语言、集合语言
(
列举法和描述法
)
描述不同的具体问题
,
感受集合语言的意义和作用
.
素养达成
通过对集合表示方法的学习
,
使学生在运用集合表示方法的过程中
,
提高数学抽象、逻辑运算的核心素养
.
新知导学
·
素养养成
1.列举法
列举法
:
把集合的元素
出来
,
并用花括号“
{
}”
括起来表示集合的方法
.
一一列举
思考
1:
用列举法表示集合应注意什么
?
答案:
在用列举法表示集合时应注意
:
(1)
元素间用分隔号“
,”;(2)
元素不重复
;(3)
元素无顺序
;(4)
列举法可表示有限集
,
也可以表示无限集
.
2.描述法
用集合所含元素的
表示集合的方法.
共同特征
思考2:
我们知道
,
R
表示全体实数集合
,
那么
R
={
全体实数集
}={
R
}={x|x∈
R
}
是否正确
?
答案:
不正确,由于
R
表示全体实数构成的集合,而
“
{ }
”
这个符号已经含有
“
所有
”
的含义了,如果将全体实数集表示为{全体实数集}就是重复表述,应改为{实数},而{
R
}表示只含有实数集的集合,它也可以理解为该集合只有一个元素;因此
R
≠{
R
}.而{x|x∈
R
}表示全体实数构成的集合,因此
R
={x|x∈
R
},但表述不如
R
简单,因此表示实数集时常用
R
而不用
{x|x∈
R
}.
思考
3:
集合
A={x|x>2}
与
B={t|t>2}
是否表示同一个集合
?
答案:
是.虽然表示代表元素的字母不同,但都表示由大于2的所有实数组成的集合,因而表示同一个集合.
思考4:
用描述法表示集合应注意什么?
答案
:
用描述法表示集合时应注意的四点
(1)
写清楚该集合中元素的代号
;
(2)
说明该集合中元素的性质
;
(3)
所有描述的内容都可写在集合符号内
;
(4)
在描述法的一般形式
{x∈I|p(x)}
中
,
“
x
”
是集合中元素的代表形式
,I
是
x
的范围
,
“
p(x)
”
是集合中元素
x
的共同特征
,
竖线不可省略
,
也不能出现未被说明的字母
.
名师点津
集合两种表示方法的区别与联系
:
由于集合的两种常用表示法中列举法可以看清集合的元素
,
描述法可以看清集合元素的特征
.
因此在表示集合时
,
要依据对象的特点或个数的多少采用适当的形式
,
当集合中元素个数较少或集合中元素呈现一定的规律性时
,
一般采用列举法
;
当集合中元素的共同特征简明清晰且易于表述时
,
常采用描述法
.
大多数集合既可用列举法表示
,
也可用描述法表示
,
两种方法可用
表格对比如下
:
表示
方法
定义
表达
形式
适用
对象
表现
重点
特点
列
举
法
把集合中的所有元素一一列举出来
,
并置于花括号
“
{
}
”
内的
方法
如
{1,2,
3,4,5}
①元素个数不多
;②
元素个数多但有规律
集合
外延
直观、
明了
描
述
法
用集合中元素的共同特征表示集合的方法
{x|p(x)}
元素的特征清晰
集合
内涵
抽象、
概括
从表格可以看出
,
变换表示集合的两种方法时重点在于对元素特征的提炼及具体元素的寻找
.
课堂探究
·
素养提升
题型一 列举法表示集合的理解
[例1]
用列举法表示下列集合:
(1)小于10的所有自然数组成的集合;
(2)方程x
2
=x的所有实数根组成的集合;
解:
(1)设小于10的所有自然数组成的集合为A,
那么A={0,1,2,3,4,5,6,7,8,9}.
(2)设方程x
2
=x的所有实数根组成的集合为B,
那么B={0,1}.
(3)不等式5x-30};y
轴右侧点的集合为
C
2
={(x,y)|x>0}.
(4)
分别写出一次函数
y=2x+1
图象上所有点的横坐标、图象上所有点的坐标、图象上去掉点
(1,3),(5,11)
后的点构成的集合
”
.
解
:
(4)
一次函数
y=2x+1
图象上所有点的横坐标构成的集合为
D
1
=
{x|y=2x+1};
一次函数
y=2x+1
的图象上所有点构成的集合
D
2
={(x,
y)|y=2x+1};
一次函数
y=2x+1
图象上去掉点
(1,3),(5,11)
后的点构成的集合
D
3
={(x,y)|y=2x+1,x≠1
且
x≠5}.
方法技巧
用描述法表示集合时首先要明确集合的代表元素是数集、点集还是其他元素
,
明确集合中元素的形式后
,
再将集合中所有元素的公共特征写在竖线的右边
.
[
备用例
1]
用描述法表示下列集合
.
(1)
三角形的全体构成的集合
;
(2)
不等式
2x-3