甘肃兰州皋兰四中八年级数学下期末测试试卷
加入VIP免费下载

本文件来自资料包: 《甘肃兰州皋兰四中八年级数学下期末测试试卷》 共有 3 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
八年级(下)数学期末测试题 姓名: 得分: 一、选择题(每小题 3 分,共 30 分) 1、在相同时刻的物高与影长成比例,如果高为 1.5 米的测竿的影长为 2.5 米,那么影长为 30 米的旗杆的高 是( ) A.20 米 B.18 米 C.16 米 D.15 米 2、如图,D、E 分别是 AB、AC 上两点,CD 与 BE 相交于点 O,下列条件中不能使ΔABE 和ΔACD 相似的是( ) A.∠B=∠C B.∠ADC=∠AEB C.BE=CD,AB=AC D.AD∶AC=AE∶AB 3、如图所示,D、E 分别是ΔABC 的边 AB、AC 上的点,DE∥BC,并且 AD∶BD=2,那么 SΔADE∶S 四边形 DBCE=( ) (A) 3 2 (B) 4 3 (C) 5 4 (D) 9 4 4.在矩形 ABCD 中,E、F 分别是 CD、BC 上的点,若∠AEF=90°,则一定有( ) (A)ΔADE∽ΔAEF (B)ΔECF∽ΔAEF (C)ΔADE∽ΔECF (D)ΔAEF∽ΔABF (第 2 题图) (第 3 题图) (第 4 题图) (第 7 题图) 6、如图,在大小为 4×4 的正方形网格中,是相似三角形的是( ) ① ② ③ ④ A.①和② B.②和③ C.①和③ D.②和④ 7、如图是圆桌正上方的灯泡 O 发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径 为 1.2m,桌面距离地面 1m,若灯泡 O 距离地面 3m,则地面上阴影部分的面积为( ) A.0.36πm2 B.0.81πm2 C.2πm2 D.3.24πm2 8、如图,直线 l1∥l2,AF∶FB=2∶3,BC∶CD=2∶1,则 AE∶EC 是( ) A.5∶2 B.4∶1 C.2∶1 D.3∶2 9.下列说法正确的是( ) A .所有的等腰三角形都相似 B.所有的直角三角形都相似 C.所有的等腰直角三角形都相似 D.有一个角相等的两个等腰三角形都相似 10.已知 0432  cba ,则 c ba  的值为( ) A. 5 4 B. 4 5 C.2 D. 2 1 (第 8 题图) (第 12 题图) (第 13 题图) (第 14 题图) (第 15 题图) 二、填空题(每小题 4 分,共 20 分) 11、两个相似多边形的一组对应边分别为 3cm 和 4.5cm,如果它们的面积之和为 130cm2,那么较小的多边形的 面积是 cm2. 12、如图,DE 与 BC 不平行,当 AC AB = 时,ΔABC 与ΔADE 相似. 13、如图,AD=DF=FB,DE∥FG∥BC,则 SⅠ∶SⅡ∶SⅢ= . 14、如图,正方形 ABCD 的边长为 2,AE=EB,MN=1,线段 MN 的两端在 CB、CD 上滑动,当 CM= 时,ΔAED 与 N,M,C 为顶点的三角形相似. 15、如图,在直角坐标系中有两点A(4,0)、B(0,2),如果点C在x轴上(C与A不重合),当点C的坐标为 或 时,使得由点 B、O、C 组成的三角形与ΔAOB 相似(至少写出两个满足条件的点的坐标). 三、计算题(每小题 5 分,共 20 分) 16.先化简,再求值: xx xx xx x     2 2 12 1 2 2 2 其中 2 1x 17、解不等式组      063 512 x x ,并把解集在数轴上表示出来。 18、分解因式: 22 363 ayaxyax  19、解分式方程(注意要检验哦): )1( 5 1 6   xx x x 四、解答题(每小题 6 分,共 30 分) 20、如图,四边形 ABCD、CDEF、EFGH 都是正方形. (1)⊿ACF 与⊿ACG 相似吗?说说你的理由. (2)求∠1+∠2 的度数. 21.王明同学为了测量河对岸树 AB 的高度.他在河岸边放一面平面镜 MN,他站在 C 处通过平面镜看到树的顶 端 A.如图 l-4-33,然后他量得 B、P 间的距离是 56 米,C、P 间距离是 12 米,他的身高是 1.74 米. ⑴他这种测量的方法应用了物理学科的什么知识?请简要说明; ⑵请你帮他计算出树 AB 的高度. 22.甲、乙两人在相同条件下各射靶 10 次,每次射靶的成绩情况如图所示. (1) 请填写下表: 平均数 方差 中位数 命中 9 环以上次数 甲 7 1.2 1 乙 5.4 (2)请你就下列两个不同的角度对这次测试结果进行分析. ①从平均数和方差相结合看(分析谁的成绩好些); ②从平均数和命中 9 环以上的次数相结合看(分析谁的成绩好些); 23、在ΔABC 中,AB=4 如图(1)所示,DE∥BC,DE 把ΔABC 分成面积相等的两部分,即 SⅠ=SⅡ,求 AD 的长. 如图(2)所示,DE∥FG∥BC,DE、FG 把ΔABC 分成面积相等的三部分,即 SⅠ=SⅡ=SⅢ,求 AD 的长. 如图(3)所示,DE∥FG∥HK∥…∥BC,DE、FG、HK、…把ΔABC 分成面积相等的 n 部分,SⅠ=SⅡ=SⅢ=…,请直 接写出 AD 的长. 24.某工程队要招聘甲、乙两种工种的工人 150 人,他们的月工资分别为 600 元和 1000 元,现要求乙种工种 的人数不少于甲种工种人数的 2 倍。设招聘甲种工种的人数为 x,工程队每月所付工资为 y 元。 试求出 x 的取值范围; 试求 y 与 x 的函数关系,并求出 x 为何值时,y 取最小值,最小值为多少? 五、争分夺秒(每空 2 分,共 20 分) 10、设x 3 =y 5 =z 7 ,则x+y y =______, y+3z 3y-2z =______. 11、如图,四边形 EFGH 是ABC 内接正方形,BC=21cm,高 AD=15cm,则内接正方形边长 EF=____________。 12、如图,要使AEF 和ACB 相似,已具备条件__________________,还需补充的条件是_________,或 _________,或_________。 14、RTABC 中,AC⊥BC,CD⊥AB 于 D,AC=8,BC=6,则 AD=_________。 16、如图,在梯形 ABCD 中,AD∥BC,AC、BD 交于 O 点,S△AOD:S△COB=1:9,则 S△DOC:S△BOC = . 17、如图,已知点 D 是 AB 边的中点,AF∥BC,CG∶GA=3∶1,BC=8,则 AF= . 一、选择题 1.对已知数据-4,1,2,-1,2,下面结论错误的是( ) A.中位数为 1; B.方差为 26; C.众数为 2; D.平均数为 0. 2.下列说法中,正确的是( ) A.一组数据的平均数大于其中的每个数据. B.每个小组的频率是这个小组中的平均数与频数的比值. C.数据 2,3,4,5 的标准差是 4,6,8,10 的标准差的一半. D.样本数据、样本方差、样本标准差的单位是一致的. 4.甲、乙两个女生合唱队各有 5 名队员,她们的身高分别为: 第 14 题 A C BD 第 12 题 A B C E F A B C D O 第 16 题 A B D F G CE 第 17 题 B E F H I 第 11 题 G CD A 甲队:1.60 1.62 1.60 1.59 1.59 乙队:1.70 1.60 1.61 1.50 1.59 其中身高比较整齐的是( ) A.甲队; B.乙队; C.两队一样; D.无法确定. 5.一个容量为 80 的样本,最大值为 141,最小值为 50,取组距为 10,可以分成( ) A.10 组; B.9 组; C.8 组; D.7 组. 二、填空题 6.已知在一个样本中,50 个数据分别落在 5 个组内,第一、二、三、四、五组数据的个数分别是 2,8,15, 20,5,则第四组的频数为_____________,频率为_____________. 7.已知样本 nxxx 、、、 21 的方差为 3,则样本 32 32 32 21  nxxx ,,,  的方差为_______________. 8.对某班 40 位同学的一次考试成绩进行统计,频率分布表中,80.5~90.5 这一组的频率是 0.20,那么成 绩在 80.5~90.5 这个分数段的人数是_____________. 9.某公园在取消售票之前对游园人数进行了 10 天的统计,结果有 3 天是每天有 800 人游园,有 2 天是每天 1200 人游园,有 5 天是 600 人游园,则这 10 天平均每天游园的人数是__________________. 10.已知样本容量为 40,在样本频率分布直方图中,如图所示.各小长方形的高的比是 AE:BF:CG:DH=1: 3:4:2,那么第三组频率为______________________. 第 10 题图 第 11 题图 11.某校为了解一个年级学生的情况,在这个年级抽取了 50 名学生,对某学科进行测试,将所得成绩(成 绩均为整数)整理后,画出频率分布直方图,如上图所示:请回答下列问题: (1)这次测试 90 分以上的人数(包括 90 分)有多少人? (2)本次测试这 50 名学生成绩的及格率是多少?(60 分以上为及格,包括 60 分) (3)这个年级此学科的学习情况如何?请你在下列给出的三个选项中任取一个: A.好; B.一般; C.不好.( ) 14.从某校参加初中毕业考试的学生中,抽取了 30 名学生的数学成绩,分数如下: 90 85 84 86 87 98 79 85 90 93 68 95 85 71 78 61 94 88 77 100 70 97 85 68 99 88 85 92 93 97 这个样本数据的频率分布表如下: (1)这个样本数据的众数是_______________(分); (2)列频率分布表时,所取的组距为_______________(分); (3)在这个频率分布表中,数据落在 94.5~99.5(分)范围内的频数为_______________. (4)在这个频率分布表中,数据落在 74.5~79.5(分)范围内的频数为________________. (5)在这个频率分布表中,频率最大的一组数据的范围是_________________(分). (6)估计这个学校初中毕业考试的数学成绩在 80 分以上(含 80 分)的约占_________%.

资料: 4.5万

进入主页

人气:

10000+的老师在这里下载备课资料