天添资源网 http://www.ttzyw.com/
双井中学八年级(数学)备课组
集 体 备 课 教 案
主 备: 辅 备:
上课时间
年 月 日 (星期 )
本周第( )课时
总( )课时
上课教师
班 级
八年级( )班
课题:
《14.2.1 平方差公式》
三维 目标
知识与技能
会推导平方差公式,并能运用公式进行简单的运算
过程与方法
在探索平方差公式的过程中,培养符号感和推理能力
情感态度与价值观
在计算过程中发现规律,并能用符号表示,从而体会数学的简捷美
教学重点:平方差公式的推导和应用
教学难点:理解平方差公式的结构特征,灵活应用平方差公式
教学方法与手段:探究与讲练相结合
教学过程:
一.提出问题,创设情境
[师]你能用简便方法计算下列各题吗?
(1)2001×1999 (2)998×1002
[生甲]直接乘比较复杂,我考虑把它化成整百,整千的运算,从而使运算简单,2001可以写成2000+1,1999可以写成2000-1,那么2001×1999可以看成是多项式的积,根据多项式乘法法则可以很快算出.
[生乙]那么998×1002=(1000-2)(1000+2)了.
[师]很好,请同学们自己动手运算一下.
[生](1)2001×1999=(2000+1)(2000-1)
=20002-1×2000+1×2000+1×(-1)
=20002-1
=4000000-1
=3999999.
(2)998×1002=(1000-2)(1000+2)
=10002+1000×2+(-2)×1000+(-2)×2
=10002-22
=1000000-4
=1999996.
[师]2001×1999=20002-12
998×1002=10002-22 新 课 标 第 一 网
它们积的结果都是两个数的平方差,那么其他满足这个特点的运算是否也有这个规律呢?我们继续进行探索.
二.导入新课
[师]出示投影片
修订、增减
天添资源网 http://www.ttzyw.com/
天添资源网 http://www.ttzyw.com/
计算下列多项式的积.
(1)(x+1)(x-1)
(2)(m+2)(m-2)
(3)(2x+1)(2x-1)
(4)(x+5y)(x-5y)
观察上述算式,你发现什么规律?运算出结果后,你又发现什么规律?再举两例验证你的发现.
(学生讨论,教师引导)
[生甲]上面四个算式中每个因式都是两项.
[生乙]我认为更重要的是它们都是两个数的和与差的积.例如算式(1)是x与1这两个数的和与差的积;算式(2)是m与2这两个数的和与差的积;算式(3)是2x与1这两个数的和与差的积;算式(4)是x与5y这两个数的和与差的积.
[师]这个发现很重要,请同学们动笔算一下,相信你还会有更大的发现.
解:(1)(x+1)(x-1)
=x2+x-x-1=x2-12
(2)(m+2)(m-2)
=m2+2m-2m-2×2=m2-22
(3)(2x+1)(2x-1)
=(2x)2+2x-2x-1=(2x)2-12
(4)(x+5y)(x-5y)w W w.xK b 1. c o m
=x2+5y·x-x·5y-(5y)2
=x2-(5y)2
[生]从刚才的运算我发现:
也就是说,两个数的和与差的积等于这两个数的平方差,这和我们前面的简便运算得出的是同一结果.
[师]能不能再举例验证你的发现?
[生]能.例如:
51×49=(50+1)(50-1)=502+50-50-1=502-12.wwW .x k B 1.c Om
天添资源网 http://www.ttzyw.com/
天添资源网 http://www.ttzyw.com/
即(50+1)(50-1)=502-12.
(-a+b)(-a-b)=(-a)·(-a)+(-a)·(-b)+b·(-a)+b·(-b)
=(-a)2-b2=a2-b2
这同样可以验证:两个数的和与这两个数的差的积,等于这两个数的平方差.
[师]为什么会是这样的呢?
[生]因为利用多项式与多项式的乘法法则展开后,中间两项是同类项,且系数互为相反数,所以和为零,只剩下这两个数的平方差了.
[师]很好.请用一般形式表示上述规律,并对此规律进行证明.
[生]这个规律用符号表示为:
(a+b)(a-b)=a2-b2.其中a、b表示任意数,也可以表示任意的单项式、多项式.
利用多项式与多项式的乘法法则可以做如下证明:
(a+b)(a-b)=a2-ab+ab-b2=a2-b2.
[师]同学们真不简单.老师为你们感到骄傲.能不能给我们发现的规律(a+b)(a-b)=a2-b2起一个名字呢?新|课| 标| 第| 一|网
[生]最终结果是两个数的平方差,叫它“平方差公式”怎样样?
[师]有道理.这就是我们探究得到的“平方差公式”,请同学们分别用文字语言和符号语言叙述这个公式.
(出示投影)
两个数的和与这两个数的差的积,等于这两个数的平方差.
即:(a+b)(a-b)=a2-b2
平方差公式是多项式乘法运算中一个重要的公式,用它直接运算会很简便,但必须注意符合公式的结构特征才能应用.
在应用中体会公式特征,感受平方差公式给运算带来的方便,从而灵活运用平方差公式进行计算
(出示投影片)
例1:运用平方差公式计算:
(1)(3x+2)(3x-2)
(2)(b+2a)(2a-b)
(3)(-x+2y)(-x-2y)
例2:计算:
(1)102×98
(2)(y+2)(y-2)-(y-1)(y+5)
[师生共析]运用平方差公式时要注意公式的结构特征,学会对号入座.
在例1的(1)中可以把3x看作a,2看作b.
即:(3x+2)(3x-2)=(3x)2-22
(a+b)(a-b)=a2-b2
同样的方法可以完成(2)、(3).如果形式上不符合公式特征,可以做一些简单的转化工作,使它符合平方差公式的特征.比如(2)应先作如下转化:
(b+2a)(2a-b)=(2a+b)(2a-b).ww w.Xkb1 .co M
如果转化后还不能符合公式特征,则应考虑多项式的乘法法则.
天添资源网 http://www.ttzyw.com/
天添资源网 http://www.ttzyw.com/
(作如上分析后,学生可以自己完成两个例题.也可以通过学生的板演进行评析达到巩固和深化的目的)
[例1]解:(1)(3x+2)(3x-2)=(3x)2-22=9x2-4.
(2)(b+2a)(2a-b)=(2a+b)(2a-b)=(2a)2-b2=4a2-b2.
(3)(-x+2y)(-x-2y)=(-x)2-(2y)2=x2-4y2.
[例2]解:(1)102×98=(100+2)(100-2)
=1002-22=10000-4=9996.
(2)(y+2)(y-2)-(y-1)(y+5)
=y2-22-(y2+5y-y-5)
=y2-4-y2-4y+5
=-4y+1.
三.随堂练习
P108练习1,2
教师小结:
通过本节学习我们掌握了如下知识.
(1)平方差公式
两个数的和与这两个数的差的积等于这两个数的平方差.这个公式叫做乘法的平方差公式.即(a+b)(a-b)=a2-b2.
(2)公式的结构特征
①公式的字母a、b可以表示数,也可以表示单项式、多项式;
②要符合公式的结构特征才能运用平方差公式;
③有些式子表面上不能应用公式,但通过适当变形实质上能应用公式.如:(x+y-z)(x-y-z)=[(x-z)+y][(x-z)-y]=(x-z)2-y2.
布置作业:课本P习题14.2第1题
板书设计:
14.2.1 平方差公式
归纳规律──平方差公式;
文字语言:两数和与这两数差的积,等于它们的平方差
符号语言:(a+b)(a-b)=a2-b2
应用、升华:
教学反思:
天添资源网 http://www.ttzyw.com/