天添资源网 http://www.ttzyw.com/
双井中学八年级(数学)备课组
集 体 备 课 教 案
主 备: 辅 备:
上课时间
年 月 日 (星期 )
本周第( )课时
总( )课时
上课教师
班 级
八年级( )班
课题:
《13.3.2 等边三角形(一)》
三维 目标
知识与技能
使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度
过程与方法
熟识等边三角形的性质及判定
情感态度与价值观
总结代数法求几何角度,线段长度的方法
教学重点:等腰三角形的性质及其应用Xk b 1. Com
教学难点:简洁的逻辑推理
教学方法与手段:
教学过程:
一、复习巩固
1.叙述等腰三角形的性质,它是怎么得到的?
等腰三角形的两个底角相等,也可以简称“等边对等角”。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点 C重合,线段BD与CD也重合,所以∠B=∠C。
等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一”。由于AD为等腰三角形的对称轴,所以BD= CD,AD为底边上的中线;∠BAD=∠CAD,AD为顶角平分线,∠ADB=∠ADC=90°,AD又为底边上的高,因此“三线合一”。
2.若等腰三角形的两边长为3和4,则其周长为多少?
二、新课
在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。
等边三角形具有什么性质呢?
1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。
2.你能否用已知的知识,通过推理得到你的猜想是正确的?
等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到∠A=∠B=C,又由∠A+∠B+∠C=180°,从而推出∠A=∠B=∠C=60°。
3.上面的条件和结论如何叙述?
等边三角形的各角都相等,并且每一个角都等于60°。
三个角都相等的三角形是等边三角形ww w.Xkb1 .co M
有一个叫是60°的等腰三角形是等边三角形也称为正三角形。
修订、增减
天添资源网 http://www.ttzyw.com/
天添资源网 http://www.ttzyw.com/
例1.在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数。
分析:由AB=AC,D为BC的中点,可知AB为 BC底边上的中线,由“三线合一”可知AD是△ABC的顶角平分线,底边上的高,从而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。
问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样?
问题2:求∠1是否还有其它方法?
三、练习巩固
1.判断下列命题,对的打“√”,错的打“×”。
a.等腰三角形的角平分线,中线和高互相重合( )
b.有一个角是60°的等腰三角形,其它两个内角也为60°( )
2.如图(2),在△ABC中,已知AB=AC,AD为∠BAC的平分线,且∠2=25°,求∠ADB和∠B的度数。
3.P80练习1、2。
教师小结:
由等腰三角形的性质可以推出等边三角形的各角相等,且都为60°。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。
作业: 课本P82第7题。
板书设计:
13.3.2 等边三角形(一)
等边三角形慨念
教学反思:
x k b 1 .c o m
新课标第一网系列资料 www.xkb1.com 新课标第一网不用注册,免费下载!
天添资源网 http://www.ttzyw.com/