应用一元一次方程——打折销售
加入VIP免费下载

本文件来自资料包: 《应用一元一次方程——打折销售》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
天添资源网 http://www.ttzyw.com/‎ ‎4 应用一元一次方程——打折销售 ‎1.商品销售中与打折有关的概念及公式 ‎(1)与打折有关的概念 ‎①进价:也叫成本价,是指购进商品的价格.‎ ‎②标价:也称原价,是指在销售商品时标出的价格.‎ ‎③售价:商家卖出商品的价格,也叫成交价.‎ ‎④利润:商家通过买卖商品所得的盈利,一般以“获利”、“盈利”、“赚”等词语表示所得利润.‎ ‎⑤利润率:利润占进价的百分比.‎ ‎⑥打折:出售商品时,将标价乘十分之几或百分之几卖出即为打折.‎ 打几折,就是以原价的百分之几十或十分之几卖出.如打8折就是以原价的80%卖出.‎ ‎(2)利润问题中的关系式 ‎①售价=标价×折扣;‎ 售价=成本+利润=成本×(1+利润率).‎ ‎②利润=售价-进价=标价×折扣-进价.‎ ‎③利润=进价×利润率;利润=成本价×利润率;利润率==.‎ ‎【例1】 (1)某商品成本100元,提高40%后标价,则标价为__________元;‎ ‎(2)500元的9折是__________元,__________元的八折是340元;‎ ‎(3)一件商品的进价是40元,售价是70元,这件商品的利润率是__________.‎ 解析:(1)成本×(1+提高率)=标价,即100×(1+40%)=140(元);‎ ‎(2)九折即原价的十分之九,所以500元打9折,就是500×0.9=450(元),设x的八折是340,所以有0.8x=340,解得x=425;‎ ‎(3)利润率====75%.‎ 答案:(1)140 (2)450 425 (3)75%‎ ‎2.列方程解应用题的一般步骤及注意事项 ‎(1)列方程解应用题步骤 ‎①审:审题,分析题中已知的是什么、求的是什么,明确各数量之间的关系.‎ ‎②找:找出能够表示应用题全部含义的一个相等关系.‎ ‎③设:设未知数(一般求什么就设什么).‎ ‎④列:根据相等关系列出方程.‎ ‎⑤解:解所列的方程,求出未知数的值.‎ ‎⑥验:检验所求出的解是否符合实际意义.‎ ‎⑦答:写出答案.‎ ‎(2)列方程解应用题应注意 ‎①列方程时,要注意方程两边应是同一类量,并且单位要统一.‎ ‎②解、答时必须写清单位名称.‎ ‎③求出的方程的解要判断是否符合实际意义,即必须检验.‎ ‎【例2-1】 在商品市场经常可以听到小贩的叫嚷声和顾客的讨价还价声:“10元一个的玩具赛车打八折,快来买啊!”“能不能再便宜2元?”如果小贩真的让利(便宜)2元卖了,他还能获利20%,那么一个玩具赛车进价是多少元?‎ 分析:利润=销售价×打折数-让利数-进价.‎ 解:设进价是x元,依题意,得x×20%=10×0.8-2-x.‎ 解得x=5.‎ 天添资源网 http://www.ttzyw.com/‎ 天添资源网 http://www.ttzyw.com/‎ 答:一个玩具赛车进价是5元.‎ ‎【例2-2】 某商场购进甲、乙两种服装后,都加价40%标价出售,“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付款182元,两种服装标价之和为210元.问这两种服装的进价和标价各是多少元?‎ 分析:本题的题情稍复杂,需要求四个未知量.可以先求出标价,然后再求进价.‎ 解:设甲种服装的标价为x元,则进价为元,乙种服装的标价为(210-x)元,进价为元.‎ 根据题意,得0.8x+0.9(210-x)=182.解得x=70.所以210-x=140.=50,=100.‎ 答:甲种服装的进价为50元,标价是70元;乙种服装的进价是100元,标价是140元.‎ ‎3.利用一元一次方程确定商品的利润 与商品的利润有关的实际问题主要有以下三类:‎ ‎(1)确定商品的打折数 利用一元一次方程解应用题的关键是找出题目中的相等关系,根据相等关系列出方程.利润中的求最低打折数的问题,要根据与打折有关的等量关系:标价×打折数-进价=利润,利润=进价×利润率.‎ ‎(2)确定商品的利润 根据商品的售价和利润率确定商品的利润,也是一元一次方程的应用之一.用到的等量关系是:进价×(1+利润率)=售价.‎ ‎(3)优惠问题中的打折销售 商场中的某些优惠销售是购买数量超过一定的范围才打折或超过的部分打折.要分段分情况计算不同的利润.‎ ‎【例3-1】 某种商品的进价是400元,标价是600元,商店要求以利润不低于5%打折销售,那么售货员最低可以打几折出售此商品?‎ 分析:利润问题的相等关系是:商品售价-商品进价=商品利润.其中商品利润=进价×利润率,即400×5%.而商品售价=标价×打折数.‎ 解:设最低可以打x折出售.根据题意,得600×0.1x-400=400×5%.解得x=7.‎ 答:售货员最低可以打7折出售此商品.‎ ‎【例3-2】 某书城开展学生优惠售书活动,凡一次购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.李明购书后付了212元,若没有任何优惠,则李明应该付多少元?‎ 分析:先判断属于哪一种优惠,再根据情况确定相等关系.当购书是200元时,应该付200×0.9=180(元),李明支付了212元,说明超过了200元,相等关系是:不超过200元的部分应付款+超过200元部分应付款=实际付款.‎ 解:因为200×0.9=180(元)

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料