第14课时 反比例函数及其应用
【课标要求】
1、理解反比例函数意义
2、会画反比例函数的图像
3、理解反比例函数的性质
4、能根据实际问题中的反比例关系用待定系数法确定反比例函数的解析式
【知识要点】
1.反比例函数:一般地,如果两个变量x、y之间的关系可以表示成y=
或 (k为常数,k≠0)的形式,那么称y是x的反比例函数.
2. 反比例函数的图象和性质
3.的几何含义:反比例函数y= (k≠0)中比例系数k的几何意义,即过双曲线y= (k≠0)上任意一点P作x轴、y轴垂线,设垂足分别为A、B,则所得矩形OAPB的面积为 .
【典型例题】
【例1】.对于反比例函数,下列说法不正确的是( )
A.点在它的图象上 B.它的图象在第一、三象限
C.当时,随的增大而增大 D.当时,随的增大而减小
【例2】.如图,已知A(-4,2)、B(n,-4)是一次函数的图象与反比例函数的图象的两个交点.(1) 求此反比例函数和一次函数的解析式;
(2) 根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.
【例3】如图,已知反比例函数的图像与一次函数y=kx+4的图像相交于P、Q两点,并且P点的纵坐标是6.
(1)求这个一次函数的解析式;
(2)求△POQ的面积
【课堂检测】
▲1.试写出图象位于第二、四象限的一个反比例函数的解析式 .
▲2.如果双曲线经过点(2,-1),那么m= ;
▲3.己知反比例函数 (x >0),y随x 的增大而增大,则m的取值范围是 .
▲4.抛物线上的两点为(x1,y1),(x2,y2),且x1y2 B.y10) (4)y=x2(x