图形分割类问题中考备考复习导学案
加入VIP免费下载

本文件来自资料包: 《图形分割类问题中考备考复习导学案》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
第34课时 图形分割类 ‎ ‎【课标要求】‎ 近几年中考试题中出现一些别具特色的几何作图题一图形的分割与拼合,这类问题趣味性强,想象空间广阔,一般没有很复杂的计算,但却需要较强的分析问题、探索问题的能力,对提高学生的思维能力是不无裨益的.‎ ‎【知识要点】‎ 1、 利用平行的等底同高的性质进行等积变形。‎ 2、 利用全等形等积变形。‎ 3、 利用对称性进行图形变形。‎ ‎【典型例题】‎ ‎【例1】(荆门2005)在△ABC中,借助作图工具可以作出中位线EF,沿着中位线EF一刀剪切后,用得到的△AEF和四边形EBCF可以拼成平行四边形EBCP,剪切线与拼图如图示1,仿上述的方法,按要求完成下列操作设计,并在规定位置画出图示,‎ ‎⑴在△ABC中,增加条件_____________,沿着_____一刀剪切后可以拼成矩形,剪切线与拼图画在图示2的位置;‎ ‎⑵在△ABC中,增加条件_____________,沿着_____一刀剪切后可以拼成菱形,剪切线与拼图画在图示3的位置;‎ ‎⑶在△ABC中,增加条件_____________,沿着_____一刀剪切后可以拼成正方形,剪切线与拼图画在图示4的位置 ‎⑷在△ABC(AB≠AC)中,一刀剪切后也可以拼成等腰梯形,首先要确定剪切线,其操作过程(剪切线的作法)是:___________________________________________________________________________‎ 然后,沿着剪切线一刀剪切后可以拼成等腰梯形,剪切线与拼图画在图示5的位置.‎ ‎【例2】(本题满分10分)如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.如,平行四边形的一条对线所在的直线就是平行四边形的一条面积等分线.‎ ‎(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有________;‎ ‎(2)如图1,梯形ABCD中,AB∥DC,如果延长DC到E,使CE=AB,连接AE,那么有S梯形ABCD=S△‎ ABE.请你给出这个结论成立的理由,并过点A作出梯形ABCD的面积等分线(不写作法,保留作图痕迹);‎ ‎(3)如图,四边形ABCD中,AB与CD不平行,S△ADC>S△ABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并给出证明;若不能,说明理由.‎ ‎【课堂检测】‎ ‎1、能够把面积分为相等的直线为好线 我们把能平分四边形面积的直线称为“好线”。利用下面的作图,可以得到四边形的“好线”:在四边形ABCD中,取对角线BD的中点O,连结OA、OC。显然,折线AOC能平分四边形ABCD的面积,再过点O作OE‖AC交CD于E,则直线AE即为一条“好线”。 ‎ ‎(1)试说明直线AE是“好线”的理由; ‎ ‎(2)如下图,AE为一条“好线”,F为AD边上的一点,请作出经过F点的“好线”,并对画图作适当说明(不需要说明理由)‎ ‎2.(本小题满分12分)如图1,点将线段分成两部分,如果,那么称点为线段的黄金分割点.‎ 某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线将一个面积为的图形分成两部分,这两部分的面积分别为,,如果,那么称直线为该图形的黄金分割线.‎ ‎(1)研究小组猜想:在中,若点为边上的黄金分割点(如图2),则直线是的黄金分割线.你认为对吗?为什么?‎ ‎(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?‎ ‎(3)研究小组在进一步探究中发现:过点任作一条直线交于点,再过点作直线,交于点,连接(如图3),则直线也是的黄金分割线.‎ 请你说明理由.‎ ‎(4)如图4,点是的边的黄金分割点,过点作,交于点,显然直线是的黄金分割线.请你画一条的黄金分割线,使它不经过各边黄金分割点.‎ ‎【课后作业】‎ ‎1.探究规律:如图2-6-4所示,已知:直线m∥n,A、B为直线n上两点,C、P为直线m上两点.‎ ‎ (1)请写出图2-6-4中,面积相等的各对三角形;‎ ‎ (2)如果A、B、C为三个定点,点P在m上移动,那么,无论P点移动到任何位置,总有________与△ABC的面积相等.理由是:_________________.‎ ‎ 解决问题:如图 2-6-5所示,五边形 ABCDE是张大爷十年前承包的一块土地的示意图,经过多年开垦荒地,现已变成如图2-6-6所示的形状,但承包土地与开垦荒地的分界小路(2-6-6中折线CDE)还保留着;张大爷想过E点修一条直路,直路修好后,要保持直路左边的土地面积与承包时的一样多,右边的土地面积与开垦的荒地面积一样多.请你用有关的几何知识,按张大爷的要求设计出修路方案(不计分界小路与直路的占地面积).‎ ‎ (1)写出设计方案.并画出相应的图形;‎ ‎ (2)说明方案设计理由.‎ ‎2.如图1,△ABC中,AD为BC边上的的中线,则S△ABD= S△ADC.‎ 实践探究 ‎(1)在图2中,E、F分别为矩形ABCD的边AD、BC的中点,则S阴和S矩形ABCD之间满足的关系式为 ;‎ ‎(2)在图3中,E、F分别为平行四边形ABCD的边AD、BC的中点,则S阴和S平行四边形ABCD之间满足的关系式为 ;‎ ‎(3)在图4中,E、F分别为任意四边形ABCD的边AD、BC的中点,则S阴和S四边形ABCD之间满足的关系式为 ;‎ 解决问题:‎ ‎(4)在图5中,E、G、F、H分别为任意四边形ABCD的边AD、AB、BC、CD的中点,并且图中阴影部分的面积为‎20平方米,求图中四个小三角形的面积和,即S1+ S2+ S3+ S4=?‎ 图5‎ ‎3.在图14-1—14-5中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上.‎ F 图14-1‎ A B C E D H G ‎(2b<a)‎ 操作示例 当2b<a时,如图14-1,在BA上选取点G,使BG=b,连结FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD的位置构成四边形FGCH.‎ 思考发现 小明在操作后发现:该剪拼方法就是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上.连结CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH(如图14-1),过点F作FM⊥AE于点M(图略),利用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.‎ 实践探究 ‎(1)正方形FGCH的面积是 ;(用含a,b的式子表示)‎ ‎(2)类比图14-1的剪拼方法,请你就图14-2—图14-4的三种情形分别画出剪拼成一个新正方形的示意图.‎ 联想拓展 小明通过探究后发现:当b≤a时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移.‎ 当b>a时,如图14-5的图形能否剪拼成一个正方形?若能,请你在图中画出剪拼的示意图;若不能,简要说明理由.‎ ‎4.数学课上,同学们探究下面命题的正确性:顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形.为此,请你解答问题(1).‎ ‎(1)已知:如图①,在△ABC中,AB=AC,∠A=36°,直线BD平分∠ABC交AC于点D.求证:△ABD与△DBC都是等腰三角形;‎ ‎(2)在证明了该命题后,小颖发现:下面两个等腰三角形如图②、③也具有这种特性.请你在图②、图③中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所画等腰三角形两个底角的度数;‎ ‎(3)接着,小颖又发现:直角三角形和一些非等腰三角形也具有这样的特性,如:直角三角形斜边上的中线可把它分成两个小等腰三角形.请你画出两个具有这种特性的三角形的示意图,并在图中标出三角形各内角的度数.‎ 说明:要求画出的两个三角形不相似,而且既不是等腰三角形也不是直角三角形.‎

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料