$14.2.1平方差公式 导学案
备课时间
201( 3 )年( 9 )月( 16 )日 星期( 一 )
学习时间
201( )年( )月( )日 星期( )
学习目标
1.会推导平方差公式,并能运用公式进行简单的运算.
2.培养学生观察、归纳、概括的能力.
3.在探索平方差公式的过程中,培养符号感和推理能力.
4.在计算过程中发现规律,并能用符号表示,从而体会数学的简捷美
学习重点
掌握平方差公式的推导和应用.
学习难点
理解平方差公式的结构特征,灵活应用平方差公式.
学具使用
多媒体课件、小黑板、彩粉笔、三角板等
学习内容
学习活动
设计意图
一、创设情境独立思考(课前20分钟)
1、阅读课本P107 ~108 页,思考下列问题:
(1)平方差公式的内容是什么?
(2)课本P108页例1例2你能独立解答吗?
2、独立思考后我还有以下疑惑:
二、答疑解惑我最棒(约8分钟)
甲:
乙:
丙:
丁:
同伴互助答疑解惑
$14.2.1平方差公式 导学案
学习活动
设计意图
三、合作学习探索新知(约15分钟)
1、小组合作分析问题
2、小组合作答疑解惑
3、师生合作解决问题
【1】多项式与多项式相乘的法则是什么?
【2】计算下列多项式的积.
(1)(x+1)(x-1)=
(2)(m+2)(m-2)=
(3)(2x+1)(2x-1)=
(4)(x+5y)(x-5y)=
观察上述算式,你发现什么规律?运算出结果后,你又发现什么规律?再举两例验证你的发现.
解:(1)(x+1)(x-1)=x2+x-x-1=x2-12
(2)(m+2)(m-2)=m2+2m-2m-2×2=m2-22
(3)(2x+1)(2x-1) =(2x)2+2x-2x-1=(2x)2-12
(4)(x+5y)(x-5y) =x2+5y·x-x·5y-(5y)2
=x2-(5y)2
◆从刚才的运算我发现:
等号的一边:
两个数的和与差的积,
等号的另一边:
是这两个数的平方差
$14.2.1平方差公式 导学案
学习活动
设计意图
四、归纳总结巩固新知(约15分钟)
1、知识点的归纳总结:
★平方差公式:
两个数的和与这两个数的差的积,等于这两个数的平方差.
(a+b)(a-b)=a2-ab+ab-b2=a2-b2.
即 (a+b)(a-b)=a2-b2
2、运用新知解决问题:(重点例习题的强化训练)
【1】下列哪些多项式相乘可以用平方差公式?
【2】例1:直接运用
(1)(3x+2)(3x-2)(2)(b+2a)(2a-b)
(3)(-x+2y)(-x-2y)
解:(1)(3x+2)(3x-2)=(3x)2-22=9x2-4.
(2)(b+2a)(2a-b)=(2a+b)(2a-b)=(2a)2-b2=4a2-b2.
(3)(-x+2y)(-x-2y)=(-x)2-(2y)2=x2-4y2.
【3】例2:简便计算
例:(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)
$14.2.1平方差公式 导学案
学习活动
设计意图
解:(1)102×98=(100+2)(100-2)
=1002-22=10000-4=9996.
(2)(y+2)(y-2)-(y-1)(y+5)
=y2-22-(y2+5y-y-5)
=y2-4-y2-4y+5
=-4y+1.
【4】课本P108页练习(写到书上)
五、课堂小测(约5分钟)
六、独立作业我能行
1、独立思考$14.2.2完全平方公式(一)工具单
2、课本P112页习题14.2第1题(写到作业本上)
七、课后反思:
1、学习目标完成情况反思:
2、掌握重点突破难点情况反思:
3、错题记录及原因分析:
$14.2.1平方差公式 导学案
学习活动
设计意图
自我评价
课上
1、本节课我对自己最满意的一件事是:
2、本节课我对自己最不满意的一件事是:
作业
独立完成( ) 求助后独立完成( )
未及时完成( ) 未完成( )
五、课堂小测(约5分钟)
(1)(a+b)(-b+a)
(2)(-a-b)(a-b)
(3)(3a+2b)(3a-2b)