第六章 数据的分析
6.4 数据的离散程度
一、 问题引入:
1、 刻画数据离散程度的统计量是 、 .
2、 极差是指 .
3、 方差是 ,即
S2= .标准差就是 .
5、一组数据的 越小,这组数据就越 .
二、基础训练:
1、甲、乙两支仪仗队队员的身高(单位:cm)如下:
甲队:178,177,179,179,178,178,177,178,177,179;
乙队:178,177,179,176,178,180,180,178,176,178;
甲队队员的平均身高是 ,甲队队员身高的方差是 ;乙队队员的平均身高是 ,乙队队员身高的方差是 ; 对更为整齐.
2.人数相等的甲、乙两班学生参加了同一次数学测验, 班级平均分和方差如下:平均分都为110,甲、乙两班方差分别为340、280,则成绩较为稳定的班级为( )
A.甲班 B.乙班 C. 两班成绩一样稳定 D.无法确定
3. 一组数据13,14,15,16,17的标准差是( )
A. B.10 C.0 D.2
4. 在方差的计算公式中,数字10和20分别表示的意义可以是( )
A.数据的个数和方差 B.平均数和数据的个数
C.数据的个数和平均数 D.数据组的方差和平均数
二、 例题展示:
例1、如图是某一天A、B两地的气温变化图。问:
(1)这一天A、B两地的平均气温分别是多少?
(2)A地这一天气温的极差、方差分别是多少?B地呢?
B地
(3)A、B两地的气候各有什么特点?
A地
讨论:一组数据的方差越小,这组数据就越稳定,那么,是不是方差越小就表示这组数据离散程度越低?
例2、某校从甲、乙两名优秀选手中选一名参加全市中学生运动会跳远比赛.预先对这两名选手测试了10次,他们的成绩(单位:cm)如下:
1
2
3
4
5
6
7
8
9
10
甲的成绩
585
596
610
598
612
597
604
600
613
601
乙的成绩
613
618
580
574
618
593
585
590
598
624
(1)甲、乙的平均成绩分别是多少?
(2)甲、乙这10次比赛成绩的方差分别是多少?
(3)这两名运动员的运动成绩各有什么特点?
(4)历届比赛表明,成绩达到596cm就很可能夺冠,你认为为了夺冠应选谁参加这项比赛?
(5)如果历届比赛表明,成绩达到610cm就能打破记录,你认为为了打破记录应选谁参加这项比赛?
四、课堂检测:
1、某校从甲乙两名优秀选手中选一名选手参加全市中学生田径百米比赛(100米
记录为12.2秒,通常情况下成绩为12.5秒可获冠军)。该校预先对这两名选手测试了8次,测试成绩如下表:
1
2
3
4
5
6
7
8
甲的成绩
12.1
12.4
12.8
12.5
13
12.6
12.4
12.2
乙的成绩
12
11.9
12.8
13
13.2
12.8
11.8
12.5
根据测试成绩,请你运用所学过的统计知识做出判断,派哪一位选手参加比赛更好?为什么?