第九节函数与方程
[知识能否忆起]
1.函数的零点
(1)定义:
对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点.
(2)函数的零点与相应方程的根、函数的图象与x轴交点间的关系:
方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.
(3)函数零点的判定(零点存在性定理):
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)0)的图象与零点的关系
Δ>0
Δ=0
Δ<0
二次函数y=ax2+bx+c (a>0)的图象
与x轴的交点
(x1,0),(x2,0)
(x1,0)
无交点
零点个数
两个
一个
零个
3.二分法
对于在区间[a,b]上连续不断且f(a)·f(b)