第五节函数的图象
[知识能否忆起]
一、利用描点法作函数图象
其基本步骤是列表、描点、连线,首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性);其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点);最后:描点,连线.
二、利用基本函数的图象作图
1.平移变换
(1)水平平移:y=f(x±a)(a>0)的图象,可由y=f(x)的图象向左(+)或向右(-)平移a个单位而得到.
(2)竖直平移:y=f(x)±b(b>0)的图象,可由y=f(x)的图象向上(+)或向下(-)平移b个单位而得到.
2.对称变换
(1)y=f(-x)与y=f(x)的图象关于y轴对称.
(2)y=-f(x)与y=f(x)的图象关于x轴对称.
(3)y=-f(-x)与y=f(x)的图象关于原点对称.
(4)要得到y=|f(x)|的图象,可将y=f(x)的图象在x轴下方的部分以 x轴为对称轴翻折到x轴上方,其余部分不变.
(5)要得到y=f(|x|)的图象,可将y=f(x),x≥0的部分作出,再利用偶函数的图象关于y轴的对称性,作出x<0时的图象.
3.伸缩变换
(1)y=Af(x)(A>0)的图象,可将y=f(x)图象上所有点的纵坐标变为原来的A倍,横坐标不变而得到.
(2)y=f(ax)(a>0)的图象,可将y=f(x)图象上所有点的横坐标变为原来的倍,纵坐标不变而得到.
[小题能否全取]
1.一次函数f(x)的图象过点A(0,1)和B(1,2),则下列各点在函数f(x)的图象上的是( )
A.(2,2) B.(-1,1)
C.(3,2) D.(2,3)
解析:选D 一次函数f(x)的图象过点A(0,1),B(1,2),则f(x)=x+1,代入验证D满足条件.
2.函数y=x|x|的图象大致是( )
解析:选A 函数y=x|x|为奇函数,图象关于原点对称.
3.(教材习题改编)在同一平面直角坐标系中,函数f(x)=ax与g(x)=ax的图象可能是下列四个图象中的( )
解析:选B 因a>0且a≠1,再对a分类讨论.
4.(教材习题改编)为了得到函数y=2x-3的图象,只需把函数y=2x的图象上所有的点向______平移______个单位长度.
答案:右 3
5.若关于x的方程|x|=a-x只有一个解,则实数a的取值范围是________.
解析:由题意a=|x|+x
令y=|x|+x=图象如图所示,故要使a=|x|+x只有一解则a>0.
答案:(0,+∞)
1.作图一般有两种方法:直接作图法、图象变换法.其中图象变换法,包括平移变换、伸缩变换和对称变换,要记住它们的变换规律.
[注意] 对于左、右平移变换,可熟记口诀:左加右减.但要注意加、减指的是自变量,否则不成立.
2.一个函数的图象关于原点(y轴)对称与两个函数的图象关于原点(y轴)对称不同,前者是自身对称,且为奇(偶)函数,后者是两个不同的函数对称.
作函数的图象
典题导入
[例1] 分别画出下列函数的图象:
(1)y=|lg x|;
(2)y=2x+2;
(3)y=x2-2|x|-1.
[自主解答] (1)y=图象如图1.
(2)将y=2x的图象向左平移2个单位.图象如图2.
(3)y=图象如图3.
由题悟法
画函数图象的一般方法
(1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征直接作出.
(2)图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序,对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.
以题试法
1.作出下列函数的图象:
(1)y=|x-x2|;
(2)y=.
解:(1)y=
即y=
其图象如图1所示(实线部分).
(2)y==1+,先作出y=
的图象,再将其向右平移1个单位,并向上平移1个单位即可得到y=的图象,如图2.
识图与辨图
典题导入
[例2] (2012·湖北高考)已知定义在区间[0,2]上的函数y=f(x)的图象如图所示,则y=-f(2-x)的图象为( )
[自主解答] 法一:由y=f(x)的图象知
f(x)=
当x∈[0,2]时,2-x∈[0,2],
所以f(2-x)=
故y=-f(2-x)=
法二:当x=0时,-f(2-x)=-f(2)=-1;当x=1时,-f(2-x)=-f(1)=-1.观察各选项,可知应选B.
[答案] B
由题悟法
“看图说话”常用的方法
(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题.
(2)定量计算法:通过定量的计算来分析解决问题.
(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.
以题试法
2.(1)如图,函数f(x)的图象是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),则f的值等于________.
(2)(2012·东城模拟)已知函数对任意的x∈R有f(x)+f(-x)=0,且当x>0时,f(x)=ln(x+1),则函数f(x)的图象大致为( )
解析:(1)∵由图象知f(3)=1,
∴=1.∴f=f(1)=2.
(2)∵对∀x∈R有f(x)+f(-x)=0,∴f(x)是奇函数.f(0)=0,y=f(x)的图象关于原点对称,当x