第三节简单的逻辑联结词、全称量词与存在量词
[知识能否忆起]
一、简单的逻辑联结词
1.用联结词“且”联结命题p和命题q,记作p∧q,读作“p且q”.
2.用联结词“或”联结命题p和命题q,记作p∨q,读作“p或q”.
3.对一个命题p全盘否定,就得到一个新命题,记作綈p,读作“非p”或“p的否定”.
4.命题p∧q,p∨q,綈p的真假判断:
p∧q中p、q有一假为假,p∨q有一真为真,p与非p必定是一真一假.
二、全称量词与存在量词
1.全称量词与全称命题
(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.
(2)含有全称量词的命题,叫做全称命题.
(3)全称命题“对M中任意一个x,有p(x)成立”可用符号简记为∀x∈M,p(x),读作“对任意x属于M,有p(x)成立”.
2.存在量词与特称命题
(1)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.
(2)含有存在量词的命题,叫做特称命题.
(3)特称命题“存在M中的一个x0,使p(x0)成立”可用符号简记为∃x0∈M,P(x0),读作“存在M中的元素x0,使p(x0)成立”.
三、含有一个量词的命题的否定
命题
命题的否定
∀x∈M,p(x)
∃x0∈M,綈p(x0)
∃x0∈M,p(x0)
∀x∈M,綈p(x)
[小题能否全取]
1.(2011·北京高考)若p是真命题,q是假命题,则( )
A.p∧q是真命题 B.p∨q是假命题
C.綈p是真命题 D.綈q是真命题
答案:D
2.(教材习题改编)下列命题中的假命题是( )
A.∃x0∈R,x0+=2 B.∃x0∈R,sin x0=-1
C.∀x∈R,x2>0 D.∀x∈R,2x>0
答案:C
3.(2012·湖南高考)命题“∃x0∈∁RQ,x∈Q”的否定是( )
A.∃x0∉∁RQ,x∈Q B.∃x0∈∁RQ,x∉Q
C.∀x∉∁RQ,x3∈Q D.∀x∈∁RQ,x3∉Q
解析:选D 其否定为∀x∈∁RQ,x3∉Q.
4.(教材习题改编)命题p:有的三角形是等边三角形.命题綈p:__________________.
答案:所有的三角形都不是等边三角形
5.命题“∃x0∈R,2x-3ax0+9