贵阳市修文华驿中学教学案 朱文艺 打造我们自己的品牌
思考与收获
第38课时 圆的有关计算
【知识梳理】
1. 圆周长公式:
2. n°的圆心角所对的弧长公式:
3. 圆心角为n°的扇形面积公式: 、 .
4. 圆锥的侧面展开图是 ;底面半径为,母线长为的圆锥的侧面积公式为:
;圆锥的表面积的计算方法是:
5.圆柱的侧面展开图是: ;底面半径为,高为的圆柱的侧面积公式是: ;圆柱的表面积的计算方法是:
【注意点】
【例题精讲】
【例1】如图,正方形网格中,△ABC为格点三角形(顶点都是格点),将绕点按逆时针方向旋转90°,得到△AB1C1. (1)在正方形网格中,作出△AB1C1;
(2)设网格小正方形的边长为1,求旋转过程中动点所经过的路径长.
C
B
A
O
F
D
E
【例2】如图,AB为⊙O的直径,CD⊥AB于点E,交⊙O于点D,OF⊥AC于点F.
(1)请写出三条与BC有关的正确结论;
(2)当∠D=30°,BC=1时,求圆中阴影部分的面积.
40%
(图1)
(图2)
60%
【例3】如图,小明从半径为5的圆形纸片中剪下40%圆周的 一个扇形,然后利用剪下的扇形制作成一个圆锥形玩具纸帽(接缝处不重叠),那么这个圆锥的高为( )
A.3B.4 C. D.
【例4】(庆阳)如图,线段AB与⊙O相切于点C,连结OA、OB,OB交⊙O于点D,已知OA=OB=6㎝,AB=㎝.
求:(1)⊙O的半径;(2)图中阴影部分的面积.
D
思考与收获
—◇◇ 3 ◇◇—
贵阳市修文华驿中学教学案 朱文艺 打造我们自己的品牌
【当堂检测】
1.圆锥的底面半径为3cm,母线为9,则圆锥的侧面积为( )
A.6 B.9C.12 D.27
2.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是( )
A.25π B.65π C.90π D.130π
3.圆锥的侧面展开图形是半径为8cm,圆心角为120°的扇形,则此圆锥的底面半径为( ) A. cm B. cm C.3cm D. cm
4.圆锥侧面积为8πcm2,侧面展开图圆心角为450,则圆锥母线长为( ) A.64cm B.8cm C.㎝ D.㎝
5.一个圆锥侧面展开图的扇形的弧长为,则这个圆锥底面圆的半径为( )
A. B. C. D.
6.如图,有一圆心角为120 o、半径长为6cm的扇形,若将OA、OB重合后围成一
圆锥侧面,那么圆锥的高是( )
A. cm B. cm C. cm D. cm
7.已知圆锥的底面半径是2㎝,母线长是4㎝,则圆锥的侧面积是 ㎝2.
8.如图,两个同心圆的半径分别为2和1,∠AOB=120°,则阴影部分的面积为
A
B
C
D
第6题图 第8题图 第9题图
第11题图
9.如图,Rt△ABC中,AC=8,BC=6,∠C=90°,分别以AB、BC、AC为直径作三个半圆,那么阴影部分的面积为 (平方单位)
10.王小刚制作了一个高12cm,底面直径为10cm的圆锥,则这个圆锥的侧面积
是 cm2.
C
B
A
11.如图,梯形中,,,,,以为圆心在梯形内画出一个最大的扇形(图中阴影部分)的面积是 .
12.制作一个圆锥模型,圆锥底面圆的半径为3.5cm,侧面母线长为6cm,则此圆锥侧面展开图的扇形圆心
角为 度.
第13题图
第14题图
13.如图,是由绕点顺时针旋转而得,且点在同一条
直线上,在中,若,,,则斜边旋转到所扫过的扇形面积为 .
14.翔宇中学的铅球场如图所示,已知扇形AOB的面积是36米2,弧AB的长为9米,那么半径OA=______米.
15.如图,AB是⊙O的直径,BC是⊙O的弦,半径OD⊥BC,垂足为E,若BC=,DE=3.
求:(1) ⊙O的半径; (2)弦AC的长;(3)阴影部分的面积.
第15题图
—◇◇ 3 ◇◇—
贵阳市修文华驿中学教学案 朱文艺 打造我们自己的品牌
—◇◇ 3 ◇◇—