六年级数学下册第三单元圆柱和圆锥导学案(人教版)
单元教材分析:
本单元是在学习了长方体和立方体的基础上进行教学的,是小学里学习立体图形的最后阶段,知识的综合性和对学生的能力要求都 比较高,因此,长方形和正方形以及圆的基础知识都是本单元的认知基础。同时,数学思想方法的有效迁移在本单元的教学中起着重要的作用。
教材在编写上遵循了“特征—表面—体”的发展过程,使学生对圆柱和圆锥的理解逐步深入,并拓展到空心的圆柱(钢管、垫片等)的表面积和体积的计算。化归和类比是常用的数学思想方法,教师要在学生已有的知识和方法的基础上展开教学。教材比较注重与生活实际的联系,编排了较多的解决实际问题的题目,有利于学生知识的巩固和技能的形成。本单元在教学方法上的一个显著特点是让学生积极、主动地实践探究,要让学生合作探究的过程中自主发现规律,获取知识,提高研究问题和解决问题的能力。
单元教学目标:
1.认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。
2.探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3.通过观察、设计和制作圆柱、圆锥体模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
单元教学重难点:
重点:理解、掌握圆柱和圆锥的基本特征。会运用公式计算体积,解决有关的简单实际问题。
难点:圆柱、圆锥体积计算公式的推导。
单元课时安排:
圆柱的认识 ……………1课时
圆柱的表面积 …………3课时
圆柱的体积 ……………3课时
圆锥的认识…………… 1课时
圆锥的体积…………… 2课时
整理复习……………… 2课时
课题: 圆柱的认识 课型 : 新授课 课时:第1课时
温馨提示
课前交流
看谁学得多
【学习目标】
借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。
【学习重点难点】
教学重点:认识圆柱的特征。 教学难点:看懂圆柱的平面图。
【学法指导】
1、试着找一个圆柱实物,看一看,摸一摸圆柱是由哪几个部分组成的?
2.自学课本P11:拿个圆柱实物指出它底面、侧面、高,思考圆柱的底面、侧面有什么特征?
3、自制一个圆柱体,沿侧面一刀剪开,观察圆柱的侧面展开后是什么图形?一个完整的圆柱展开图包括哪些?
4.借助学具,把展开的侧面重新包上,想象侧面的长、宽与圆柱的什么有关?
【定向导学】
1、你知道圆的各部分名称吗?写一写
2、你见过P10页物体的形状吗?它叫什么?生活中有哪些物体的形状是圆柱形的?
【自主学习】
1.圆柱的表面
(1)摸摸圆柱。请同学摸摸自己手中圆柱的表面,说说发现了什么?圆柱是由几部分组成的
(2)指导看书:摸到的上下两个面叫什么?它们的形状大小如何?摸到的圆柱周围的曲面叫什么?
2.圆柱的高
什么叫圆柱的高。圆柱的高在哪些地方可以找到?它有什么特点?
【合作交流】
3.圆柱的侧面展开
(1) 动手操作:请同学分小组拿出橡皮、蜡笔、水彩笔、固体胶水等有商标纸的圆柱形实物,分别把商标纸剪开,再打开,观察商标纸的形状.
反馈后讨论:展开后得到长方形和正方形的是怎样剪的?展开后得到平行四边形的是怎样剪的?长方形与圆柱有什么关系?
(2)寻求发现.展开的长方形的长和宽与圆柱的关系.
把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。你发现了什么?
(3)延伸发现.展开的平行四边形的底和高及正方形的边长与圆柱的关系。
① 讨论:平行四边形能否通过什么方法转化成长方形?
② 想一想:当圆柱底面周长与高相等时,侧面展开图是什么形?
小组长带领小组合作,解决问题,并找出本组的疑难点。
总结所学写在小黑板上。
我最棒!
【质疑探究】
通过这节课的学习,你还有什么疑问?
【当堂检测】
一、填空。
1.圆柱的上、下两个面叫做( )。它们是( )。
2.圆柱的侧面是一个( )。圆柱的侧面展开,一般情况下得到一个( );特殊情况下得到一个( )。
3.圆柱两个底面之间的距离叫做( )。
4.圆柱的侧面展开是一个长方形时,长方形的长等于圆柱的( ),宽等于圆柱的( ),因为长方形的面积=( ),所以圆柱的侧面积=( )。
5.圆柱的侧面展开是一个正方形时,圆柱的( )和圆柱的( )相等。
6圆柱的表面展开,一般情况下得到( )和( ),圆是圆柱的( ),长方形是圆柱的( ),
二、书中练习。
1.做第11页“做一做”的第2题。
2.做第15页练习二的第1、.2.、3题
课题:圆柱的表面积 课型 : 新授课 课时:第2课时
温馨提示
课前交流
【学习目标】
在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
【学习重点难点】
教学重点:掌握圆柱侧面积和表面积的计算方法。
教学难点:运用所学的知识解决简单的实际问题。
【学法指导】
教科书p13-14例3、例4
1.找个实物圆柱,摸一摸它的表面,思考:圆柱的表面积指的是什么?
2.回顾圆柱侧面的形状以及长、宽与圆柱的关系,按照下面过程,试着推导圆柱的侧面积公式,以及圆柱的表面积公式?
圆柱的侧面积= 的面积
=
【定向导学】
1、长方体的表面积指的是什么?怎样计算长方体的表面积?
今天学习圆柱的表面积计算
【自主学习】
尝试练习:
1、 求下面各圆柱的侧面积。
(1) 底面周长2.5dm,高0.6dm.
(2)底面直径8cm,高12cm.
2、 求下面个圆柱的表面积。
(1) 底面积是40平方厘米。侧面积室25平方厘米。
(2) 底面半径是2dm,高是5dm.
【合作交流】
1、圆柱的表面积例3(摸一摸圆柱的表面)
圆柱的表面积指的是什么?它可以分为几部分?
2、侧面积展开后是一个什么图形,长方形的面积和圆柱的侧面积有什么关系呢?
圆柱的侧面积= 的面积
圆柱的侧面积应该怎样计算呢?
3、圆柱有几个底面?是什么图形?而且怎样?底面面积如何求?
4、圆柱的表面积计算 公式:
小组长带领小组合作,解决问题,并找出本组的疑难点。总结方法写在小黑板上。
我最棒!
【质疑探究】
通过这节课的学习,你还有什么疑问?
【当堂检测】
1、求底面半径是10厘米,高30厘米的圆柱的表面积
一辆压路机前轮直径1.6m,前轮宽度是3m.
(1)压路机前轮转动1圈,压路面积是多少平方米?
(2)如果每分转动20圈,1小时压路面积是多少平方米?
2、做一个无盖的圆柱形铁皮水桶,底面直径围分米,高为5分米,至少需要多大面积的铁皮?求至少需要多少铁皮,就是求水桶的表面积
课题: 应用圆柱表面积公式解决问题 课型 : 新授课 课时:第3课时
温馨提示
课前交流
【学习目标】
掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
【学习重点难点】
学习重点:圆柱表面积的计算
学习难点:判断实际物体由几部分组成
【学法指导】
自学P14页的例题,在运用公式时注意物体由几个面
【定向导学】
一个圆柱高20厘米,底面直径12厘米。
(1) 圆柱的底面积是多少?
(2) 圆柱的侧面积是多少?
(3) 圆柱的表面积是多少?
【自主学习】
1自学P14页的例题。
2、你觉得例4与我们学得圆柱表面积公式有什么区别?今后做题应注意什么?
3、用铁皮制作1节通风管,它的长是60cm,底面圆的直径是10CM。至少需要铁皮多少平方厘米?
【合作交流】
在做圆柱表面积应用题时我们应注意什么?你知道做题思路吗?
小组长解决本组成员各自不会做的题目。再
带领小组合作,解决问题
探究方法。总结后写在小黑板上
我最棒!
【质疑探究】
通过这节课的学习,你还有什么疑问?
【当堂检测】
一个圆柱形油桶,高1.2米,底面半径0.6米,制作一个这样的油桶,至少需要铁皮多少平方米?(得数保留一位小数)
把一个高是8厘米的圆柱沿着底面直径垂直切开表面积增加96平方厘米,原来圆柱的表面积是多少?
砌一个圆柱形水池,底面周长是25.12米,深2米,要在它的底面和四周抹上水泥,如果每平方米用水泥10千克,共需水泥多少千克?
课题: 圆柱的认识与表面积练习题 课型 :复习课
课时:第4课时
温馨提示
课前交流看谁学得多
【学习目标】
培养学生良好的空间观念和解决简单的实际问题的能力。
【学习重点难点】
学生运用知识的能力
【学法指导】
记下不会的体型再与学生讨论
【定向导学】
圆柱的认识与表面积你学到了哪些知识?与同学说一说。
【自主学习】
一、 基本练习:
求下面圆柱的表面积
1、圆柱底面周长是20厘米,高是10厘米。
2、圆柱底面直径径是6厘米,高是3分米。
3、圆柱底面半径是3厘米,高是10厘米。
二、选择题:
1、甲乙两人分别用一张长20厘米、宽15厘米的长方形纸用两种不同的方法围成一个圆柱体,(接头处不重合),那么围成的圆柱体( )1.
A高一定相等 B侧面积一定相等 C侧面积和高都相等 D侧面积和高都不相等
2、把一个棱长是2分米的正方体削成一个最大的圆柱体,它的侧面积是( )平方厘米。
A.6.28 B.12.56 C.18.84 D. 25.12
3、冬天护林工人给圆柱形的树干的下端涂防蛀涂料,那么粉刷树干的面积是指( ).
A.底面积 B.侧面积 C.表面积 D.体积
4、把一个棱长是2分米的正方体削成一个最大的圆柱体,它的侧面积是( )平方厘米。 A.6.28 B.12.56 C.18.84 D. 25.12
【合作交流】
思考:如果圆柱的底面周长和高相等,侧面展开是什么形状的?
如果展开后是一个边长为6.28厘米长的正方形,那么这个圆柱的底面半径是多少厘米?高是多少厘米?
如果展开后是一个边长为6.2
如果展开后是一个边长为6.28厘米长的正方形,那么这个圆柱的底面半径是多少厘米?高8厘米长的正方形,那么这个圆柱的底面半径是多少厘米?高是多少厘米?
小组长解决本组成员各自不会做的题目。再带领小组合作,解决问题
探究方法。总结后写在小黑板上
我最棒!
加油啊!
【质疑探究】
通过这节课的学习,你还有什么疑问?
【当堂检测】
运用题
1、一个圆柱形铁皮盒,底面半径2分米,高5分米。
(1)沿着这个铁皮盒的侧面贴一圈商标纸,需要多少平方分米的纸?
(2)某工厂做这样的铁皮盒100个,需要多少铁皮?
2、一个圆柱形蓄水池,底面周长25.15米,高4米,沿着这个蓄水池的四周及底部抹水泥。如果平方米用水泥20千克,一共需多少千克水泥?
3、一个压路机的滚筒的横截面直径是1米,它的长是1.8米。,如果滚筒每分钟转动8周,5分钟能压路多少平方米?
4。一个圆柱形的游泳池,底面直径是10米,高是4米在它的四周和底部涂水泥,每千克水泥可涂5平方米,共需多少千克水泥?
5、一个圆柱的侧面积是37.68平方分米,底面半径3分米,它的高是多少分米?
6、一节铁皮烟囱长1.5米,直径是0.2米,做这样的烟囱500节,至少要用铁皮多少平方
课题: 圆柱的体积 课型 : 新授课 课时:第5课时
温馨提示
课前交流看谁学得多
【学习目标】
通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程,能够运用公式正确地计算圆柱的体积。
【学习重点难点】
重点:圆柱体积计算
难点:公式的推导过程
【学法指导】
1.自己举例,回忆长方体和正方体体积的计算办法。
尝试练习:计算上图长方体和正方体的体积,并归纳长方体和正方体的体积计算方法。
2.能将圆柱转化成一种学过的图形,计算出它的体积?
3.你把圆柱拼成了近似的什么图形?它们之间有什么联系?它的底面积和高与圆柱的底面积和高有什么关系呢?
4.自学课本p19,并补充完整。思考:计算圆柱的体积需要哪几个条件
【定向导学】
1、长方体、正方体的体积怎样计算?
“长方体的体积=长×宽×高”,
2、引导学生想到长方体和正方体体积的统一公式是什么?
2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。
3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算
【自主学习】
一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?
回答下面的问题:
① 这道题已知什么?求什么?
② 能不能根据圆柱体积公式直接计算?
③ 计算之前要注意什么?
【合作交流】
1、圆柱体积计算公式的推导。
(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形)
(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(将圆柱细分,拼成一个__________)
课前探究
小组长解决本组成员各自不会做的题目。再带领小组合作,解决问题
(3)通过观察,学生明确:
长方体的底面积==圆柱的__________
长方体的高就是圆柱的___________
因为:长方体的体积=底面积×高,
所以:圆柱的体积=底面积×高,V=_____________
探究方法。总结后写在小黑板上
我最棒!
加油!
【质疑探究】
通过这节课的学习,你还有什么疑问?
【当堂检测】
一个圆柱的底面直径是6厘米,高是 10厘米,体积是多少?
一个圆柱的底面周长是25.12分米,高2分米,体积是多少?
一个圆柱铁罐的容积是1升,高是12厘米,铁罐的底面积大约是多少平方厘米?
课题: 圆柱的体积 课型 :复习课 课时:第6课时
温馨提示
课前交流看谁学得多
【学习目标】
使学生能够运用公式正确地计算圆柱的体积和容积。
【学习重点难点】
教学重点:掌握圆柱体积的计算公式。
教学难点:灵活应用圆柱的体积公式解决实际问题。
【学法指导】
1.回忆圆柱体积公式的推导过程,写下圆柱体积的计算公式。如果已知圆柱底面半径r和高h,能不能求出圆柱的体积?体积公式还可以怎么表示?
2.自己动笔完成例6,并与书本对照,说一说书本的解题思路。
【定向导学】
1、复习圆柱体积的推导过程
2、求下面图形的表面积和体积。(单位:cm)
【自主学习】
1一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?
2、自学例6,学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?_______
(2)学生尝试完成例6。
① 杯子的底面积:______________________
② 杯子的容积:________________________
一个圆柱形柱子,底面周长是25.12dm,高30dm,这个柱子的体积是多少?
【合作交流】
比较一下第1小题与例6有哪些相同的地方和不同的地方?(相同的是都要用_______公式进行计算;不同的是_____已给出底面积,可直接应用公式计算;例6只知道_____,要先求__________,再求体积.)
小组长再带领小组合作,解决问题
认真学习哟
【质疑探究】
通过这节课的学习,你还有什么疑问?
【当堂检测】
一、选择题( )
1.圆柱体的底面半径和高都扩大2倍,它的体积扩大( )倍.
①2 ②4 ③6 ④8
2.体积单位和面积单位相比较,( ).
①体积单位大 ②面积单位大
③一样大 ④不能相比
3.等底等高的圆柱体、正方体、长方体的体积相比较,( ).
①正方体体积大 ②长方体体积大
③圆柱体体积大 ④一样大
二、计算下面各圆柱的体积( )
1、底面积是30平方厘米,高4厘米。
2.底面半径2厘米,高10厘米。
3.底面直径10dm,高6dm.
4.底面周长是12.56m,高是2m.
三、解决问题.
一个圆柱形油桶,底面积是50平方分米,高12分泌。桶内装油的高度是桶高的3/4,桶内装油多少升?
课题: 圆柱的体积 课型 : 复习课 课时:第7课时
温馨提示
课前交流看谁学得多
【学习目标】
初步学会用转化的数学思想和方法,解决实际问题的能力
渗透转化思想,培养学生的自主探索意识。
【学习重点难点】
教学重点:掌握圆柱体积的计算公式。
教学难点:灵活应用圆柱的体积公式解决实际问题。
【学法指导】
运用公式正确地计算圆柱的体积和容积
【定向导学】
圆柱体积公式的灵活运用
【自主学习】
一、 仔细想认真填
1. 2平方分米5平方厘米 = ( )平方分米 3.7升 = ( )毫升
2. 把一个边长是4厘米的正方体削成一个最大的圆柱体,这个圆柱的底面半径是( )厘米,高是( )厘米,这个圆柱体的体积是( )立方厘米。
3. 一个圆柱侧面积是12.56平方分米,高是2分米,它的体积是( )。
4. 把一个圆柱的侧面展开,得到一个边长是6.28分米的正方形,这个圆柱的底面周长是( )厘米,侧面积是( )平方厘米,体积是( )立方厘米。5.将一根长5米的圆柱形木料锯成4段,表面积增加60平方分米。这根木料的体积是( )立方分米。
6.圆柱形容器底面积是78.5平方厘米,放入一块矿石,水面上升10厘米,矿石的体积是( )立方厘米。
7. 一个圆柱的高是5厘米,若高增加2厘米, 圆柱体的表面积就增加25.12平方厘米,原来圆柱体的体积是( )立方厘米。
【合作交流】
小组长解决本组成员各自不会做的题目。再
互动训练
1.一个圆柱形油桶,装满了油,把桶里的油倒出 ,还剩20升,油桶高8分米,油桶的底面积是多少平方分米?
2.一个钢管长300厘米,外半径10厘米,内半径8厘米,这根钢管约重多少千克?(每立方厘米钢重7.8克,得数保留两位小数)
带领小组合作,解决问题
探究方法。总结后写在小黑板上
我最棒!
加油哟!
【质疑探究】
通过这节课的学习,你还有什么疑问?
【当堂检测】
一、 判断对与错。
1.底面积扩大10倍,高不变的圆柱体,它的体积扩大10倍。( )
2. 两个圆柱高相等,大圆柱的体积是小圆柱的4倍,小圆柱的底面直径是大圆柱底面直径的。( )
3.长、宽、高分别为8厘米、7厘米、6厘米的铁块可以熔铸成高为15厘米,底面积为22.4平方厘米的圆柱体。 ( )
二、想一想,慎重选。
1.一个长方形的长是6厘米,宽是2厘米。以它的长为轴旋转一周所得到的圆柱体的体积是( )。
A.75.36立方厘米B.150.72立方厘米 C.56.52立方厘米 D.226.08立方厘米
三、计算下面图形的体积。
课题: 圆柱的表面积与体积复习题 课型 : 复习课 课时:第9课时
温馨提示
课前交流看谁学得多
【学习目标】
进一步掌握求圆柱表面积合体积的方法,并正确的应用
【学习重点难点】
圆柱表面积及体积公式
【学法指导】
把不会的做好记号
【定向导学】
1.圆柱的表面积的计算方法
2.求圆柱的体积需要什么条件
【自主学习】
一,请你填空。(27分)
1、100毫升=( )立方厘米 1.5米=( )分米
1500立方分米=( )立方米
2、一个圆柱底面直径是4厘米,高是10厘米,它的侧面积是( )平方厘米,体积是( )立方厘米。
3、做一些圆柱形的铁皮水管,要求需要多少铁皮就是求它的( )。要求水管可以装多少水,就是求它的( )。
5、在平地挖一个圆柱形的水池,水池的深是4米。直径是6米。这个水池占地( )平方米,需挖土( )立方米。
6、把一个圆柱的侧面展开,得到一个正方形。这个圆柱的底面半径是2厘米,圆柱的高是( )厘米,它的体积是( )立方厘米。
二,当好裁判。(10分)
1、圆柱体的侧面展开可以得到一个长方形, 这个长方形的长等于圆柱底面的周长, 宽等于圆柱的高。 ( )
2、半径为2米的圆柱体, 它的底面周长和底面积相等。 ( )
3、折线统计图更容易看出各部分和整体的关系。 ( )
三,对号入座。(把正确答案的序号写在括号中)(10分)
1、等底等高的圆柱、正方体、长方体的体积相比较,( )
A. 正方体体积大; B.长方体体积大;
C. 圆柱体体积大; D.一样大。
2、圆柱体的底面半径和高都扩大3倍, 它的体积扩大的倍数是 ( )
A. 3 B. 6 C. 9 D. 27
3、用一块长28.26厘米、宽15.7厘米的长方形铁皮,应该配上直径( )厘米的圆形铁皮就可以做成一个容积最大的容器。
A.2.5 B. 4.5 C. 5 D. 9
四,解决问题
1、一个圆柱形水池, 底面半径3米, 池高1.5米, 这个水池最多可盛水多少吨? (1立方米的水重1吨)
2、一个无盖的圆柱形铁皮水桶, 高50厘米, 底面直径30厘米,
做这个水桶大约需用多少铁皮? (得数保留整数)
3、把一根1.5米长的圆柱体木料,锯掉4分米长的一段后,表面积减少了50.24平方分米。这根木料原来的体积是多少?
4、自来水管的内直径是2厘米,水管内水的流速是每秒8厘米,5分钟可流水多少升?
6、某车间制作5个半径为0.6米、高20米的圆柱形铁管,并在它的外表涂上防锈漆。按每平方米用防锈漆0.3千克计算,一共要用防锈漆多少千克?(用进一法保留一位小数)
【合作交流】
小组长解决本组成员各自不会做的题目。再带领小组合作,解决问题
【质疑探究】
通过这节课的学习,你还有什么疑问?
课题:圆锥的认识 课型 :新授课 课时:第10课时
温馨提示
课前交流看谁学得多
【学习目标】
认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制作圆锥
【学习重点难点】
教学重点:掌握圆锥的特征。
教学难点:正确理解圆锥的组成。
【学法指导】
1.生活中哪些物体是圆锥形的?这些物体的形状有什么共同特点?
2.自学课本P24,思考什么是圆锥的高?找个圆锥实物,用手摸一摸,思考如何测量圆锥的高,并把你的方法记录下来!
3. 尝试完成“做一做”
:按照附页2的图样,用硬纸做一个圆锥,量出它的底面直径和高。
【定向导学】
一、复习
1、圆柱体积的计算公式是什么?
2、圆柱的特征是什么
3.生活中哪些物体是圆锥形的?这些物体的形状有什么共同特点?
【自主学习】
1、圆锥的认识
(1)学生拿着圆锥模型观察和摆弄后,说出自己观察的结果,圆锥有几个曲面,几个顶点和几个面是圆的,等等。
(2)在图上标出顶点,底面及其圆心O
(3)圆锥有一个曲面,圆锥的这个曲面叫做__________面。(在图上标出侧面)
(4)让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做_________。(沿着曲面上的线都不是圆锥的高,由于圆锥只有一个顶点,所以圆锥只有一条高)
2、小结
圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是什么?
3、测量圆锥的高
由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。
(1)先把圆锥的底面放平;
(2)用一块平板水平地放在圆锥的顶点上面;
(3)竖直地量出平板和底面之间的距离。
【合作交流】
教学圆锥侧面的展开图
(1)学生猜想圆锥的侧面展开后会是什么图形呢?
(2)实验来得出圆锥的侧面展开后是一个扇形。
虚拟的圆锥
小组长解决本组成员各自不会做的题目。再带领小组合作,解决问题探究方法。
(1)先让学生猜测:一个长方形通过旋转,可以形成一个圆柱。那么将三角形制片绕着一条直角边旋转,会形成什么形状?
(2)通过操作,使学生发现转动出来的是圆锥,并从旋转的角度认识圆锥
我最棒!
【质疑探究】
通过这节课的学习,你还有什么疑问?
你认识圆锥了吗?用你喜欢的方式表示出来?
【当堂检测】
1、找一找,哪些图形是圆锥体?
2、判断
(1)圆锥有无数条高( )
(2)圆锥的底面是一个椭圆( )
(3)圆锥的侧面是一个曲面,展开后是一个扇形( )
(4)从圆锥的顶点到底面上任意一点的连线叫做圆锥的高( )
3、将一个直角三角形以8厘米的直角边为轴旋转一周,可以得到一个( ),这个图形的高是( )cm,底面直径是( )cm.
课题: 圆锥的体积 课型 :新授课 课时:第11课时
温馨提示
课前交流看谁学得多
【学习目标】
使学生初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,发展学生的空间观念。
【学习重点难点】
重点:圆锥的体积计算
难点:理解圆锥体积与圆柱体积的关系
【学法指导】
1.在预习本上画出一个长方体,一个正方体,一个圆柱,测量有关数据,并计算出它们的体积。
2.要研究圆锥的体积需要转化成已学过的物体体积来计算,你认为转化成哪一种物体最合适?
3.通过书本的倒沙实验,你能发现等底等高的圆柱、圆锥体积之间的关系吗?用字母表示出来
4.能尝试着解答P26例3吗?(先解答,再与书上的答案对一对),并思考:计算圆锥的体积需要哪些已知条件。
5.尝试完成p27第3、4题。
【定向导学】
1、圆锥有什么特征?
2、圆柱体积的计算公式是什么
我们已经学过圆柱体积的计算公式,那么圆锥的体积又该如何计算呢?今天我们就来学习圆锥体积的计算。
【自主学习】
求下列各圆锥的体积。
1. 底面积是30平方厘米,高6厘米。
2. 底面半径是5dm,高12dm
.
3. 底面周长12cm,高9cm.
【合作交流】
1、教学圆锥体积的计算公式。
回亿一下,我们是怎样得到圆柱体积的计算公式的? 叙述圆柱体积计算公式的推导过程。
那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?
先让学生讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。
拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么共同的地方?”
然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”
接着,教师边演示边叙述:现在圆锥和圆柱里都是空的。我先在圆锥里装满沙土,然后倒入圆柱。请大家注意观察,看看能够倒几次正好把圆柱装满?
把圆柱装满一共倒了几次?这说明了什么?
小组长解决本组成员各自不会做的题目。再带领小组合作,解决问题
探究方法。总结后写在小黑板上
圆锥的体积=___________ 圆柱的体积=_____
圆锥的体积可以怎样表示 圆锥的体积= 1/3 ×底面积×高
用字母应该怎样表示? V=1/3 _____
加油哟!
【质疑探究】
通过这节课的学习,你还有什么疑问?
【当堂检测】
求下面各圆锥的体积:
1、“有陷阱,你敢来吗?”
(1)圆锥的体积等于圆柱体积的1/3。………… ( )
(2)一个圆锥的底面积是12平方米,高是5米, 它的体积是60立方米。 ( )(3)把一个圆柱削成一个与它等底等高的圆锥,削去的体积是圆锥的2倍。( )
2、“圆锥体积变变变”
一个圆柱形橡皮泥,底面积是12平方厘米,高是5厘米。
(1)如果把它捏成底面大小一样的圆锥,圆锥的高是多少?
(2)如果把它捏成高是10厘米的圆锥,求圆锥的底面积。
课题:圆锥的体积练习 课型 : 练习课 课时:第12课时
温馨提示:
请同学们要认真读题,分析题意。仔细计算哦!
同学们要认真合作交流,相信你们能行!
【学习目标】
进一步掌握圆锥体积的计算方法,能熟练运用圆锥体积知识解决有关实际问题。
【学习重点难点】
教学重点:熟练运用圆锥体积知识解决有关实际问题。
教学难点:正确理解圆锥体积的计算方法。
【定向导学】
说一说圆柱、圆锥的体积关系。
【学法指导】
请同学们根据圆锥的体积计算公式认真完成练习四的习题。(不会做的题目做上记号)
【自主学习】
认真完成课本练习四的习题。
【合作交流】
a) 队员在小队中提出不懂的问题,队长组织队员讨论交流。
b) 小队中合作讲解练习四的习题。
【质疑探究】
通过这节课的学习,你还有什么疑问?
同学们做题要认真,仔细
【当堂检测】
一、妙笔生花
1.一个圆柱和一个圆锥的底面积和高分别相等,圆锥的体积是圆柱体积的( ),圆柱的体积是圆锥体积的( )。
2.一个圆柱的体积是15立方厘米,与它等底等高的圆锥的体积是( )3。一个圆锥的体积是7.2立方米,与它等底等高的圆柱的体积是( )。
4.一个圆柱和圆锥等底等高,它们的体积一共60立方厘米,那么,圆柱的体积是( )立方厘米,圆锥的体积是( )立方厘米。
二、仔细审题,认真判断。
1.一个圆锥体的体积扩大3倍,它就变成了圆柱体。( )
2.一个正方体和一个圆锥体的底面积和高都相等,这个正方体体积是圆锥的3倍3。一个圆锥的底面半径扩大3倍,它的体积也扩大3倍。
4.圆锥的体积比与它等底等高的圆柱的体积小( )
三、解决问题
1.一个圆锥形的帐篷,它的的底面周长是6.28米,高与直径相等。它的容积是多少立方米?
2.把一个体积是282.6立方厘米的铁块熔铸成一个底面半径是6厘米的圆锥形机器零件,求圆锥零件的高。
3.在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米。每立方米小麦约重35千克,这堆小麦大约有多少千克?(得数保留整千克数)
4、把底面半径6厘米、长6厘米的圆柱形木料做成一个最大的圆锥。应削去木料多少立方厘米?
课题:整理和复习 课型 : 复习课 课时:第13课时
温馨提示:
请同学们要认真读题,分析题意。仔细计算哦!
同学们要认真合作交流,相信你们能行!
【学习目标】
掌握圆柱和圆锥的基础知识,进一步理解圆柱、圆锥的关系,能正确解决有关实际问题。
【学习重点难点】
教学重点:进一步掌握圆柱圆锥的基础知识。
教学难点:正确解决有关圆柱圆锥的实际问题。
【定向导学】
a) 说说圆柱、圆锥的各部分名称和特征。
b) 圆柱的侧面积、表面积怎样计算?
c) 圆柱与圆锥的体积怎样计算?它们之间有什么关系?
【学法指导】
请同学们认真完成课本29页整理和复习中的习题。(不会做的题目做上记号)
【自主学习】
1、 整理和复习第1题,将图形分类,说说每类图形的名称和特征。
2、
圆柱的侧面积=______________________圆柱的表面积=___________________
圆柱的体积=________________________圆锥的体积=_______________________
3、完成整理和复习第2、3题。
【合作交流】
1.队员在小队中提出不懂的问题,队长组织队员讨论交流。
2.小队中合作讲解整理和复习的习题。
【质疑探究】
通过这节课的学习,你还有什么疑问?
同学们做题要认真,仔细哦!
【当堂检测】
一、妙笔生花
1.一个圆柱和一个圆锥的底面积和高分别相等,圆锥的体积是圆柱体积的( ),圆柱的体积是圆锥体积的( )。
2.一个圆柱的体积是15立方厘米,与它等底等高的圆锥的体积是( )3。一个圆锥的体积是7.2立方米,与它等底等高的圆柱的体积是( )。
4.一个圆柱和圆锥等底等高,它们的体积一共60立方厘米,那么,圆柱的体积是( )立方厘米,圆锥的体积是( )立方厘米。
二、仔细审题,认真判断。
1.一个圆锥体的体积扩大3倍,它就变成了圆柱体。( )
2.一个正方体和一个圆锥体的底面积和高都相等,这个正方体体积是圆锥的3倍3。一个圆锥的底面半径扩大3倍,它的体积也扩大3倍。
4.圆锥的体积比与它等底等高的圆柱的体积小( )
三、解决问题
1.一个圆锥形的帐篷,它的的底面周长是6.28米,高与直径相等。它的容积是多少立方米?
2.把一个体积是282.6立方厘米的铁块熔铸成一个底面半径是6厘米的圆锥形机器零件,求圆锥零件的高。
3.在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米。每立方米小麦约重35千克,这堆小麦大约有多少千克?(得数保留整千克数)
把底面半径6厘米、长6厘米的圆柱形木料做成一个最大的圆锥。应削去木料多少立方厘米?
课题:整理和复习 课型 : 复习课 课时:第14课时
温馨提示:
请同学们要认真读题,分析题意。仔细计算哦!
同学们要认真合作交流,相信你们能行!
【学习目标】
应用圆柱和圆锥的知识解决有关实际问题,提高学生综合解题能力。
【学习重点难点】
应用圆柱和圆锥的知识解决有关实际问题
【定向导学】
1.圆柱的侧面积、表面积的计算公式。
2.圆柱与圆锥的体积计算公式。
【学法指导】
运用所用的圆柱、圆锥的知识完成练习五的习题,不理解的题目做上记号。
【自主学习】
动脑思想。
1.把一个圆柱的侧面展开得到一个正方形,则此圆柱的( )和( )相等。
2.一个圆锥的底在直径是圆柱底面直径的,如果它们的高相等,圆锥的体积是圆柱的( )。
3.一个圆柱和一个圆锥等底等高,它们的体积一共是100立方分米。圆锥的体积是( )立方分米。
4.一个圆柱形的无盖铁皮小桶,它的底面直径是40厘米,高是60厘米,做这个水桶至少要用多少平方厘米的铁皮?如果桶中倒入它容量的的水,求有多少升水?
【合作交流】
1.队员在小队中提出不懂的问题,队长组织队员讨论交流。
2.小队中合作讲解练习五的习题。
【质疑探究】
通过这节课的学习,你还有什么疑问?
同学们做题要认真,仔细哦!
【当堂检测】
一、填空。
(1)一个圆柱体侧面展开后是一个边长12.56厘米的正方形,这个圆柱体的底面直径是( )厘米
(2)一个圆锥体与和它等底等高的圆柱体体积相差30立方厘米,这个圆锥体的体积是( )立方厘米。
(3)一个圆柱体和一个圆锥体的底面积相等、体积也相等,圆锥体的高是3.6分米,圆柱体的高是( ) 分米。
(4)一个高1米的圆柱体,它的侧面积是6.28平方米,它的体积是( )立方米。
二、判断题。
(1)把一个圆柱体平均分成两个小圆柱体,小圆柱体的表面积是原来大圆柱体表面积的。 ( )
(2)圆柱体的高不变,底面积扩大2倍,体积就扩大2倍。 ( )
(3)一个圆锥体的体积是24立方厘米,它的高是4厘米,它的底面积是6平方厘米。( )
三、解决问题
(1)用3.14平方米的铁皮可以打制多少节直径1分米、长1米的烟囱?
(2)一个圆柱形油桶直径6分米,高8分米,制作这个油桶至少需要多少平方分米的铁皮?如果每千克油的体积是1.5立方分米,这个油桶可以装多少千克油?
一个圆柱体,把它的高截短3厘米,它的表面积就减少94.2平方厘米,它的体积会减少多少立方厘米?
六年级下册数学第三单元测试题
班级_________姓名_______成绩___________
一、填空。(每空1分,共20分)
① 一般情况下,圆柱侧面展开后是一个( ),圆锥侧面展开后是一个( )。一个圆柱的侧面展开后是一个正方形,说明它的( )和( )相等。圆柱的表面积等于( )加( )。圆锥的体积V=( )。
② 一个圆锥的底面周长是18.56厘米,高8厘米,从顶点沿高把它切成相等的两半,表面积增加了( )平方厘米。
③一个圆柱的体积是18.84立方厘米,那么,与它等底等高的圆锥的体积是( )立方厘米。
④一个圆锥的体积是18立方分米,那么与它等底等高的圆柱的体积比它多( )立方米。
⑤一个圆锥的体积比与它等底等高的圆柱的体积少6.28立方厘米,那么,这个圆锥的体积是( )立方厘米;圆柱的体积是( )立方厘米。
⑥1200平方分米=( )平方米
0.8立方米=( )立方分米=( )毫米
⑦圆柱的底面半径扩大2倍,高缩小2倍,这时圆柱的体积扩大( )倍,侧面积( )。
⑧一个圆柱和一个圆锥等底等高,已知它们的体积之和是36立方分米,其中圆柱的体积是( )立方分米,圆锥的体积是( )立方分米。
⑨把高1米的圆柱锯成两段,表面积增加4平方分米,原来圆柱的体积是( )立方分米。
二、我是小法官。(对的打 “√”,错的打“×”)(10分)
1、圆柱体积与圆锥体积的比的比值是3。( )
2、圆柱的底面直径扩大2倍,高缩小到原来的1/2,圆柱的侧面积不变。( )
3、用长30厘米,宽20厘米的一张长方形纸卷成一个圆柱,当用长做圆柱的高时,圆柱的容积最大。( )
4、当圆柱的底面半径和高都是2厘米时,圆柱的侧面积和体积相等。( )
5、一个圆锥的体积是一个圆柱体积的1/3,它们一定等底等高。()
三、最佳选择。(10分)
1、把一个圆柱木块削去108立方厘米后,得到一个最大的圆锥,圆锥的体积是( )立方厘米。
A.54 B.108 C.216
2、一个圆柱和一个圆锥等体积等底面积,圆锥的高是3厘米,圆柱的高是( )厘米。
A.1 B.1.5 C.6 D.9
3、一个圆柱底面半径扩大3倍,高缩小3倍,体积就( )
A.扩大2倍 B.扩大3倍 C.缩小3倍
4、一个圆柱的侧面展开是一个正方形,它的高是底面直径的( )。
A.1倍 B.3.14倍 C.6.28倍 D.∏倍
5、一个圆柱和一个圆锥底面积相等,体积比是3︰1,已知圆锥的高是12厘米,那么圆柱的高是( )
A.4厘米 B.8厘米 C.12厘米
四、看图计算体积。(单位:厘米)(18分)
30
34 20
五、 解决问题;(42分)
1、一个圆柱体的表面积是100平方厘米,体积是200立方厘米,底面积是多少平方厘米?
2、一个圆柱的表面积是150.72平方厘米,底面半径是2厘米,求它的体积。
3、一根圆柱形木材长2米,把它截成相等的4段后,表面积增加了18.84平方厘米。截成后每段圆木的体积是多少立方厘米?
4、底面直径是20厘米的圆钢,将其截成两段同样的圆钢,两段表面积的和为7536平方厘米,原来圆钢的体积是多少立方厘米?
5、一个长和宽都是10厘米,高为31.4厘米的长方体铁块锻造成底面半径是10厘米的圆锥的体后,圆锥体高是多少厘米?
6、底面直径是20厘米的圆柱形容器中装有一些水,将一个高10厘米,底面半径12厘米的圆锥形铅锤浸没在水中。当铅锤从水中取出后,容器中的水下降了几厘米?