2015年高考数学第8讲统计和古典概型的综合问题
例10 某校高三(1)班共有40名学生,他们每天自主学习的时间全部在180分钟到330分钟之间,按他们学习时间的长短分5个组统计,得到如下频率分布表:
组别
分组
频数
频率
第一组
[180,210)
0.1
第二组
[210,240)
8
s
第三组
[240,270)
12
0.3
第四组
[270,300)
10
0.25
第五组
[300,330)
t
(1)求分布表中s,t的值;
(2)王老师为完成一项研究,按学习时间用分层抽样的方法从这40名学生中抽取20名进行研究,问应抽取多少名第一组的学生?
(3)已知第一组学生中男、女生人数相同,在(2)的条件下抽取的第一组学生中,既有男生又有女生的概率是多少?
审题破题 →
→
→
解 (1)s==0.2,t=1-0.1-s-0.3-0.25=0.15.
(2)设应抽取x名第一组的学生,则=,得x=2.故应抽取2名第一组的学生.
(3)在(2)的条件下应抽取2名第一组的学生,记第一组中2名男生为a1,a2,2名女生为b1,b2.按学习时间用分层抽样的方法抽取2名第一组的学生共有6种结果,列举如下:a1a2,a1b1,a1b2,a2b1,a2b2,b1b2.其中既有男生又有女生被抽中的有a1b1,a1b2,a2b1,a2b2这4种结果,所以既有男生又有女生被抽中的概率为P==.
第一步:定模型:根据统计知识确定元素(总体、个体)以及要解决的概率模型.
第二步:列事件:将所有基本事件列举出来(可用树状图).
第三步:算概率:计算基本事件总数n,事件A包含的基本事件数m,代入公式P(A)=
第四步:规范答:要回到所求问题,规范作答.
跟踪训练10 某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:
产品编号
A1
A2
A3
A4
A5
质量指标(x,y,z)
(1,1,2)
(2,1,1)
(2,2,2)
(1,1,1)
(1,2,1)
产品编号
A6
A7
A8
A9
A10
质量指标(x,y,z)
(1,2,2)
(2,1,1)
(2,2,1)
(1,1,1)
(2,1,2)
2
(1)利用上表提供的样本数据估计该批产品的一等品率;
(2)在该样本的一等品中,随机抽取2件产品.
①用产品编号列出所有可能的结果;
②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.
解 (1)计算10件产品的综合指标S,如下表:
产品编号
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
S
4
4
6
3
4
5
4
5
3
5
其中S≤4的有A1,A2,A4,A5,A7,A9,共6件,故该样本的一等品率为=0.6,从而可估计该批产品的一等品率为0.6.
(2)①在该样本的一等品中,随机抽取2件产品的所有可能结果为{A1,A2},{A1,A4},{A1,A5},{A1,A7},{A1,A9},{A2,A4},{A2,A5},{A2,A7},{A2,A9},{A4,A5},{A4,A7},{A4,A9},{A5,A7},{A5,A9},{A7,A9},共15种.
②在该样本的一等品中,综合指标S等于4的产品编号分别为A1,A2,A5,A7,则事件B发生的所有可能结果为{A1,A2},{A1,A5},{A1,A7},{A2,A5},{A2,A7},{A5,A7},共6种.
所以P(B)==.
2