17.2 一元二次方程的解法
教学目标
1.会用直接开平方法解形如(a≠0,a≥0)的方程;
2.灵活应用直接开平方法解一元二次方程。
3.使学生了解转化的思想在解方程中的应用。
研讨过程
一、复习导学
1.什么叫做平方根?
2.平方根有哪些性质?
二、探索新知
试一试:
解下列方程,并说明你所用的方法,与同伴交流。
(1)x2=4 (2)x2-1=0
解(1)∵x是4的平方根
∴x=
即原方程的根为: x1= ,x2 =
(2)移向,得x2=1
∵ x是1的平方根
∴x=
即原方程的根为: x1= ,x2 =
概括总结:
就是把方程化为形如x2=a(a≥0)或(a≠0,a≥0)的形式,然后再根据平方根的意义求解的过程,叫做直接开平方法解一元二次方程。
如:已知一元二次方程mx2+n=0(m≠0),若方程可以用直接开平方法求解,且有两个实数根,则m、n必须满足的条件是( )
A.n=0 B.m、n异号
C.n是m的整数倍 D.m、n同号
例1解下列方程
(1)x2-1.21=0 (2)4x2-1=0
解:(1)移项,得x2= (2)移项,得4x2=
∵x是 的平方根 两边都除以4,得
∴x= ∵x是 的平方根
即原方程的根为: x1= ,x2 = ∴x=
即原方程的根为:
x1= ,x2 =
例2解下列方程:
⑴ (x+1)2= 2 ⑵ (x-1)2-4 = 0
⑶ 12(3-2x)2-3 = 0
练一练:
1.解下列方程:
(1)x2-0.81=0 (2)9x2=4
2.解下列方程:
2
(1)(x+2)2 =3 (2)(2x+3)2-5=0
(3)(2x-1)2 =(3-x)2
4、一个正方形的面积是100cm2, 求这正方形的边长是多少?
课堂小结:
1. 能用直接开平方法解的一元二次方程有什么特点?
2.任意一个一元二次方程都能用直接开平方法求解吗?请举例说明。
2