初二下17.3一元二次方程的根的判别式教案3(新沪科版)
加入VIP免费下载

本文件来自资料包: 《初二下17.3一元二次方程的根的判别式教案3(新沪科版)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
‎17.3 一元二次方程的根的判别式 一、素质教育目标 ‎(一)知识教学点:‎ ‎1.熟练运用判别式判别一元二次方程根的情况.‎ ‎2.学会运用判别式求符合题意的字母的取值范围和进行有关的证明.‎ ‎(二)能力训练点:‎ ‎1.培养学生思维的严密性,逻辑性和灵活性.‎ ‎2.培养学生的推理论证能力.‎ ‎(三)德育渗透点:通过例题教学,渗透分类的思想.‎ 二、教学重点、难点、疑点及解决方法 ‎1.教学重点:运用判别式求出符合题意的字母的取值范围.‎ ‎2.教学难点:教科书上的黑体字“一元二次方程ax2+bx+c=0(a≠0),当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根”可看作一个定理,书上的“反过来也成立”,实际上是指它的逆命题也成立.对此的正确理解是本节课的难点.可以把这个逆命题作为逆定理.‎ 三、教学步骤 ‎(一)明确目标 上节课学习了一元二次方程根的判别式,得出结论:“一元二次方程ax2+bx+c=0(a≠0),当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根.”这个结论可以看作是一个定理.在这个判别方法中,包含了所有各种情况,所以反过来也成立,也就是说上述结论的逆命题是成立的,可作为定理用.本节课的目标就是利用其逆定理,求符合题意的字母的取值范围,以及进行有关的证明.‎ ‎(二)整体感知 本节课是上节课的延续和深化,主要是在“明确目标”中所提的逆定理的应用.通过本节课的内容的学习,更加深刻体会到“定理”与“逆定理”的灵活应用.不但不求根就可以知道根的情况,而且知道根的情况,还可以确定待定的未知数系数的取值,本节课内容对学生严密的逻辑思维及思维全面性进行恰如其分的训练.‎ ‎(三)重点、难点的学习及目标完成过程 ‎1.复习提问 ‎(1)一元二次方程的一般形式?说出二次项系数,一次项系数及常数项.‎ ‎(2)一元二次方程的根的判别式是什么?用它怎样判别根的情况?‎ ‎2.将复习提问中的问题(2)的正确答案板书,反之,即此命题的逆命题也成立,即“一元二次方程ax2+bx+c=0,如果方程有两个不相等的实数根,则△>0;如果方程有两个相等的实数根,则△=0;如果方程没有实数根,则△<0.”即根据方程的根的情况,可以决定△值的符号,‘△’的符号,可以确定待定的字母的取值范围.请看下面的例题:‎ 例1  已知关于x的方程2x2-(4k+1)x+2k2-1=0,k取什么值时 ‎(1)方程有两个不相等的实数根;‎ ‎(2)方程有两个相等的实数根;‎ ‎(1)方程无实数根.‎ 解:∵  a=2, b=-4k-1,c=2k2-1,‎ ‎∴  b2‎-4ac=(-4k-1)2-4×2×(2k2-1)‎ ‎=8k+9.‎ 方程有两个不相等的实数根.‎ 方程有两个相等的实数根.‎ 4‎ 方程无实数根.‎ 本题应先算出“△”的值,再进行判别.注意书写步骤的简练清楚.‎ 练习1.已知关于x的方程x2+(2t+1)x+(t-2)2=0.‎ t取什么值时,(1)方程有两个不相等的实数根?(2)方程有两个相等的实数根?(3)方程没有实数根?‎ 学生模仿例题步骤板书、笔答、体会.‎ 教师评价,纠正不精练的步骤.‎ 假设二项系数不是2,也不是1,而是k,还需考虑什么呢?如何作答?‎ 练习2.已知:关于x的一元二次方程:‎ kx2+2(k+1)x+k=0有两个实数根,求k的取值范围.‎ 和学生一起审题(1)“关于x的一元二次方程”应考虑到k≠0.(2)“方程有两个实数根”应是有两个相等的实数根或有两个不相等的实数根,可得到△≥0.由k≠0且△≥0确定k的取值范围.‎ 解:∵  △=[2(k+1)]2-4k2=8k+4.‎ 原方程有两个实数根.‎ 学生板书、笔答,教师点拨、评价.‎ 例  求证:方程(m2+1)x2-2mx+(m2+4)=0没有实数根.‎ 分析:将△算出,论证△<0即可得证.‎ 证明:△=(‎-2m)2-4(m2+1)(m2+4)‎ ‎=‎4m2-4m4‎-20m2‎-16‎ ‎=-4(m4+4m2+4)‎ ‎=-4(m2+2)2.‎ ‎∵  不论m为任何实数,(m2+2)2>0.‎ ‎∴  -4(m2+2)2<0,即△<0.‎ ‎∴  (m2+1)x2-2mx+(m2-4)=0,没有实根.‎ 本题结论论证的依据是“当△<0,方程无实数根”,在论证△<0时,先将△恒等变形,得到判断.一般情况都是配方后变形为:a2,a2+2,(a2+2)2,-a2,-(a2+2)2,-(a+2)2,……从而得到判断.‎ 本题是一道代数证明题,和几何类似,一定要做到步步有据,推理严谨.‎ 此种题型的步骤可归纳如下:‎ ‎(1)计算△;(2)用配方法将△恒等变形;‎ ‎(3)判断△的符号;(4)结论.‎ 练习:证明(x-1)(x-2)=k2有两个不相等的实数根.‎ 提示:将括号打开,整理成一般形式.‎ 学生板书、笔答、评价、教师点拨.‎ ‎(四)总结、扩展 ‎1.本节课的主要内容是教科书上黑体字的应用,求符合题意的字母的取值范围以及进行有关的证明.须注意以下几点:‎ ‎(1)要用b2‎-4ac,要特别注意二次项系数不为零这一条件.‎ 4‎ ‎(2)认真审题,严格区分条件和结论,譬如是已知△>0,还是要证明△>0.‎ ‎(3)要证明△≥0或△<0,需将△恒等变形为a2+2,-(a+2)2……从而得到判断.‎ ‎2.提高分析问题、解决问题的能力,提高推理严密性和思维全面性的能力.‎ 四、布置作业 ‎1.教材P.29中B1,2,3.‎ ‎2.当方程x2+2(a+1)x+a2+‎4a-5=0有实数根时,求a的正整数解.‎ ‎(2、3学有余力的学生做.)‎ 五、板书设计 ‎12.3  一元二次方程根的判别式(二)‎ 一、判别式的意义:……‎ 三、例1……‎ 四、例2……‎ ‎△=b2‎‎-4ac ‎……‎ ‎……‎ 二、方程ax2+bx+c=0(a≠0)‎ ‎ ‎ ‎ ‎ ‎(1)当△>0,……‎ 练习1……‎ 练习2……‎ ‎(2)当△=0,……‎ ‎ ‎ ‎ ‎ ‎(3)当△<0,……‎ ‎ ‎ ‎ ‎ 反之也成立.‎ ‎ ‎ ‎ ‎ 六、作业参考答案 方程没有实数根.‎ B3.证明:∵  △=(2k+1)2-4(k-1)=4k2+5‎ 当k无论取何实数,4k2≥0,则4k2+5>0‎ ‎∴  △>0‎ ‎∴  方程x2+(2k+1)x+k-1=0有两个不相等的实数根.‎ ‎2.解:∵  方程有实根,‎ ‎∴  △=[2(a+1)]-4(a2+‎4a-5)≥0‎ 即:a≤3,a的正整数解为1,2,3‎ ‎∴  当a=1,2,3时,方程x2+2(a+1)x+a2+‎4a-5=0有实根.‎ ‎3.分析:“方程”是一元一次方程,还是一元二次方程,需分情况讨论:‎ ‎(2)当‎2m-1≠0时,‎ 4‎ ‎∵  无论m取何实数8(m-1)2≥0,即△≥0.‎ ‎∴  方程有实数根 4‎

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料