完全平方公式
教学目标:完全平方公式的推导及其应用;完全平方公式的几何背景;体会公式中字母的广泛含义,它可以是数,也可以是整式.
教学重点:(1)完全平方公式的推导过程、结构特点、语言表述、几何解释;
(2)完全平方公式的应用.
教学难点:完全平方公式的推导及其几何解释和公式结构特点及其应用.
教学过程:
一、 激发学生兴趣,引出本节内容
活动1 探究,计算下列各式,你能发现什么规律?
(1)(p+1)2 =(p+1)(p+1)=_________;
(2)(m+2)2=(m+2)(m+2)=_________;
(3)(p-1)2 =(p-1)(p-1)=_________;
(4)(m-2)2=(m-2)(m-2)=_________.
答案:(1)p2+2p+1; (2)m2+4m+4; (3)p2-2p+1; (4)m2-4m+4.
活动2 在上述活动中我们发现(a+b)2=,是否对任意的a、b,上述式子都成立呢?
学生利用多项式与多项式相乘的法则进行计算,观察计算结果,寻找一般性的结论,并进行归纳,用多项式乘法法则可得
(a+b)2=(a+b)(a+b)= a(a+b)+b(a+b)=a2+ab+ab+b2
=a2+2ab+b2.
(a-b)2=(a-b)(a-b)=a(a-b)-b(a-b)=a2-ab-ab+b2
=a2-2ab+b2.
二、问题引申,总结归纳完全平方公式
两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍,即
(a + b)2=a2+2ab+b2,
(a-b)2=a2-2ab+b2.
在交流中让学生归纳完全平方公式的特征:
(1)左边为两个数的和或差的平方;
(2)右边为两个数的平方和再加或减这两个数的积的2倍.
活动4 你能根据教材中的图8-8中的面积说明完全平方公式吗?
三.例题讲解,巩固新知
2
例3:运用完全平方公式计算
(1) (4m+ n)2 ; (2) (y-1/2)2
补充例题:运用完全平方公式计算
(1)(-x+2y)2; (2)(-x-y)2; (3) ( x + y )2-(x-y)2.
说明:(1)题可转化为(2y-x)2或(x-2y)2,再运用完全平方公式;
(2)题可以转化为(x+y)2,利用和的完全平方公式;
(3)题可利用完全平方公式,再合并同类项,也可逆用平方差公式进行计算.
例 4: 运用完全平方公式计算
(1)1022; (2)992.
思考:(a+b)2与(-a-b)2相等吗?为什么?
(a-b)2与(b-a)2相等吗?为什么?
(a-b)2与a2-b2相等吗?为什么?
练习:课本69页 1 ;2
补充例题:
(1) 如果x 2 + kxy + 9y2是一个完全平方式,求k的值
(2) 已知x+y=8,xy=12,求x2 + y2 ; (x - y )2的值
(3) 已知a + 1/a = 3 ,求 a2 + 1/a2
四、归纳小结、布置作业
小结:完全平方公式.
作业:课本71 页 习题 2 ;
2