8.2 消元—解二元一次方程组
【学习目标】
会运用代入消元法解二元一次方程组.
【学习重、难点】
1、会用代入法解二元一次方程组。
2、灵活运用代入法的技巧.
【自主学习】
一、基本概念
1、二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程。我们可以先求出一个未知数,然后再求另一个未知数,。这种将未知数的个数由多化少、逐一解决的思想,叫做____________。
2、把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做________,简称_____。
3、代入消元法的步骤:代入消元法的第一步是:将其中一个方程中的某个未知数用____的式子表示出来;第二步是:用这个式子代入____,从而消去一个未知数,化二元一次方程组为一元一次方程.
【合作探究】
1、将方程5x-6y=12变形:若用含y的式子表示x,则x=______,当y=-2时,x=_______;若用含x的式子表示y,则y=______,当x=0时,y=________ 。
2、用代人法解方程组①②,把____代人____,可以消去未知数______,方程变为:
3、若方程y=1-x的解也是方程3x+2y=5的解,则x=____,y=____。
4、若的解,则a=______,b=_______。
5、已知方程组的解也是方程组的解,则a=_______,b=________ ,3a+2b=___________。
6、用代入法解下列方程组:
⑴ ⑵ ⑶
2
【展示提升】
1. 若∣m+n-5∣+(2m+3n-5)2=0,求(m+n)2的值。
2、如果(5a-7b+3)2+=0,求a与b的值。
3、若方程组与有公共的解,求a,b.
【达标测评】
1、方程组的解是( )
A. B. C. D.
2、若2ay+5b3x与-4a2xb2-4y是同类项,则x=______,y=_______。
3、用代入法解下列方程组
⑴ ⑵
⑶ ⑷
⑸ (6)
【反思自主】:
2