排列
加入VIP免费下载

排列

ID:60122

大小:17.91 KB

页数:8页

时间:2008-11-26

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
排列教学目标  (1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;  (2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;  (3)掌握排列数公式,并能根据具体的问题,写出符合要求的排列数;  (4)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;  (5)通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度。  教学建议 一、知识结构 二、重点难点分析   本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题.难点是导出排列数的公式和解有关排列的应用题.突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中.   从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取m个元素的一个排列.因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列顺序也完全相同.排列数是指从n个不同元素中任取m(m≤n)个元素的所有不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的排列数.排列与排列数是两个概念,前者是具有m个元素的排列,后者是这种排列的不同种数.从集合的角度看,从n个元素的有限集中取出m个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数.   公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.要重点分析好 的推导.   排列的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力.   在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用.   在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求. 三、教法建议   ①在讲解排列数的概念时,要注意区分“排列数”与“一个排列”这两个概念.一个排列是指“从n个不同元素中,任取出m个元素,按照一定的顺序摆成一排”,它不是一个数,而是具体的一件事;排列数是指“从n个不同元素中取出m个元素的所有排列的个数”,它是一个数.例如,从3个元素a,b,c中每次取出2个元素,按照一定的顺序排成一排,有如下几种:                  ab,ac,ba,bc,ca,cb,   其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号 表示排列数.   ②排列的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序排列”.   从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素完全不同,或元素部分相同或元素完全相同而顺序不同的排列,都不是同一排列。叫不同排列.   在定义中“一定顺序”就是说与位置有关,在实际问题中,要由具体问题的性质和条件来决定,这一点要特别注意,这也是与后面学习的组合的根本区别.   在排列的定义中 ,如果 有的书上叫选排列,如果 ,此时叫全排列. 要特别注意,不加特殊说明,本章不研究重复排列问题.   ③关于排列数公式的推导的教学.公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.课本上用的是不完全归纳法,先推导 , ,…,再推广到 ,这样由特殊到一般,由具体到抽象的讲法,学生是不难理解的.   导出公式 后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n”、“m”比较复杂的时候把公式写错.这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最后一个因数是 ,共m个因数相乘.”这实际是讲三个特点:第一个因数是什么?最后一个因数是什么?一共有多少个连续的自然数相乘.   公式 是在引出全排列数公式 后,将排列数公式变形后得到的公式.对这个公式指出两点:(1)在一般情况下,要计算具体的排列数的值,常用前一个公式,而要对含有字母的排列数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;(2)为使这个公式在 时也能成立,规定 ,如同 时 一样,是一种规定,因此,不能按阶乘数的原意作解释.   ④建议应充分利用树形图对问题进行分析,这样比较直观,便于理解.   ⑤学生在开始做排列应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实.随着学生解题熟练程度的提高,可以逐步降低这种要求.  教学设计示例 排列 教学目标   (1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;   (2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;   (3)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力; 教学重点难点   重点是排列的定义、排列数并运用这个公式去解决有关排列数的应用问题。   难点是解有关排列的应用题。 教学过程(www.ttzyw.com)设计 一、 复习引入   上节课我们学习了两个基本原理,请大家完成以下两题的练习(用投影仪出示):   1.书架上层放着50本不同的社会科学书,下层放着40本不同的自然科学的书.   (1)从中任取1本,有多少种取法?   (2)从中任取社会科学书与自然科学书各1本,有多少种不同的取法?   2.某农场为了考察三个外地优良品种A,B,C,计划在甲、乙、丙、丁、戊共五种类型的土地上分别进行引种试验,问共需安排多少个试验小区?   找一同学谈解答并说明怎样思考的的过程   第1(1)小题从书架上任取1本书,有两类办法,第一类办法是从上层取社会科学书,可以从50本中任取1本,有50种方法;第二类办法是从下层取自然科学书,可以从40本中任取1本,有40种方法.根据加法原理,得到不同的取法种数是50+40=90.第(2)小题从书架上取社会科学、自然科学书各1本(共取出2本),可以分两个步骤完成:第一步取一本社会科学书,第二步取一本自然科学书,根据乘法原理,得到不同的取法种数是: 50×40=2000.   第2题说,共有A,B,C三个优良品种,而每个品种在甲类型土地上实验有三个小区,在乙类型的土地上有三个小区……所以共需3×5=15个实验小区. 二、 讲授新课   学习了两个基本原理之后,现在我们继续学习排列问题,这是我们本节讨论的重点.先从实例入手:   1.北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同飞机票?   由学生设计好方案并回答.   (1)用加法原理设计方案.   首先确定起点站,如果北京是起点站,终点站是上海或广州,需要制2种飞机票,若起点站是上海,终点站是北京或广州,又需制2种飞机票;若起点站是广州,终点站是北京或上海,又需要2种飞机票,共需要2+2+2=6种飞机票.   (2)用乘法原理设计方案.   首先确定起点站,在三个站中,任选一个站为起点站,有3种方法.即北京、上海、广泛任意一个城市为起点站,当选定起点站后,再确定终点站,由于已经选了起点站,终点站只能在其余两个站去选.那么,根据乘法原理,在三个民航站中,每次取两个,按起点站在前、终点站在后的顺序排列不同方法共有3×2=6种.   根据以上分析由学生(板演)写出所有种飞机票   再看一个实例.   在航海中,船舰常以“旗语”相互联系,即利用不同颜色的旗子发送出各种不同的信号.如有红、黄、绿三面不同颜色的旗子,按一定顺序同时升起表示一定的信号,问这样总共可以表示出多少种不同的信号?   找学生谈自己对这个问题的想法.   事实上,红、黄、绿三面旗子按一定顺序的一个排法表示一种信号,所以不同颜色的同时升起可以表示出来的信号种数,也就是红、黄、绿这三面旗子的所有不同顺序的排法总数.   首先,先确定最高位置的旗子,在红、黄、绿这三面旗子中任取一个,有3种方法;   其次,确定中间位置的旗子,当最高位置确定之后,中间位置的旗子只能从余下的两面旗中去取,有2种方法.剩下那面旗子,放在最低位置.   根据乘法原理,用红、黄、绿这三面旗子同时升起表示出所有信号种数是:3×2×1=6(种).   根据学生的分析,由另外的同学(板演)写出三面旗子同时升起表示信号的所有情况.(包括每个位置情况)   第三个实例,让全体学生都参加设计,把所有情况(包括每个位置情况)写出来.   由数字1,2,3,4可以组成多少个没有重复数字的三位数?写出这些所有的三位数.   根据乘法原理,从四个不同的数字中,每次取出三个排成三位数的方法共有4×3×2=24(个).   请板演的学生谈谈怎样想的?   第一步,先确定百位上的数字.在1,2,3,4这四个数字中任取一个,有4种取法.   第二步,确定十位上的数字.当百位上的数字确定以后,十位上的数字只能从余下的三个数字去取,有3种方法.   第三步,确定个位上的数字.当百位、十位上的数字都确定以后,个位上的数字只能从余下的两个数字中去取,有2种方法.   根据乘法原理,所以共有4×3×2=24种.   下面由教师提问,学生回答下列问题   (1)以上我们讨论了三个实例,这三个问题有什么共同的地方?   都是从一些研究的对象之中取出某些研究的对象.   (2)取出的这些研究对象又做些什么?   实质上按着顺序排成一排,交换不同的位置就是不同的情况.   (3)请大家看书,第×页、第×行. 我们把被取的对象叫做双元素,如上面问题中的民航站、旗子、数字都是元素.   上面第一个问题就是从3个不同的元素中,任取2个,然后按一定顺序排成一列,求一共有多少种不同的排法,后来又写出所有排法.   第二个问题,就是从3个不同元素中,取出3个,然后按一定顺序排成一列,求一共有多少排法和写出所有排法.   第三个问题呢?   从4个不同的元素中,任取3个,然后按一定的顺序排成一列,求一共有多少种不同的排法,并写出所有的排法.   给出排列定义   请看课本,第×页,第×行.一般地说,从n个不同的元素中,任取m(m≤n)个元素(本章只研究被取出的元素各不相同的情况),按着一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.   下面由教师提问,学生回答下列问题   (1)按着这个定义,结合上面的问题,请同学们谈谈什么是相同的排列?什么是不同的排列?   从排列的定义知道,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序(即元素所在的位置)也必须相同.两个条件中,只要有一个条件不符合,就是不同的排列.   如第一个问题中,北京—广州,上海—广州是两个排列,第三个问题中,213与423也是两个排列.   再如第一个问题中,北京—广州,广州—北京;第二个问题中,红黄绿与红绿黄;第三个问题中231和213虽然元素完全相同,但排列顺序不同,也是两个排列.   (2)还需要搞清楚一个问题,“一个排列”是不是一个数?   生:“一个排列”不应当是一个数,而应当指一件具体的事.如飞机票“北京—广州”是一个排列,“红黄绿”是一种信号,也是一个排列.如果问飞机票有多少种?能表示出多少种信号.只问种数,不用把所有情况罗列出来,才是一个数.前面提到的第三个问题,实质上也是这样的. 三、 课堂练习   大家思考,下面的排列问题怎样解?   有四张卡片,每张分别写着数码1,2,3,4.有四个空箱,分别写着号码1,2,3,4.把卡片放到空箱内,每箱必须并且只能放一张,而且卡片数码与箱子号码必须不一致,问有多少种放法?(用投影仪示出)   分析:这是从四张卡片中取出4张,分别放在四个位置上,只要交换卡片位置,就是不同的放法,是个附有条件的排列问题.   解法是:第一步把数码卡片四张中2,3,4三张任选一个放在第1空箱.   第二步从余下的三张卡片中任选符合条件的一张放在第2空箱.   第三步从余下的两张卡片中任选符合条件的一张放在第3空箱.   第四步把最后符合条件的一张放在第四空箱.具体排法,用下面图表表示: 所以,共有9种放法. 四、作业   课本:P232练习1,2,3,4,5,6,7.

10000+的老师在这里下载备课资料