测试5 课题学习 从数据谈节水
学习要求
综合利用所学知识和方法从事统计活动,经历收集、整理、描述和分析数据的基本过程.
课堂学习检测
一、判断题
1.在设计调查问卷时,下面的提问是否合适?合适画“√”,不合适画“×”.
(1)难道你不认为参加体育活动有益身心健康吗? ( )
(2)你赞同对学生经常进行测验和加强体育锻炼吗? ( )
(3)问一位老师“你对维持良好的课堂学习气氛感到困难吗?” ( )
(4)问一名学生“你是否遵守学校的各项纪律?” ( )
(5)在一年内,你做家务的次数大约是多少? ( )
(6)问一名学生“周六你花多长时间做作业?” ( )
二、解答题
2.某市开展了党员干部“一帮一扶贫”活动.为了解贫困群众对帮扶情况的满意程度,有关部门在该市所管辖的两个区内,分别随机抽取了若干名贫困群众进行问卷调查.根据收集的信息进行了统计,并绘制了下面尚不完整的统计图.已知在甲区所调查的贫困群众中,非常满意的人数占甲区所调查的总人数的35%.根据统计图所提供的信息解答下列问题:
(1)甲区参加问卷调查的贫困群众有_______人;
(2)请将统计图补充完整;
(3)小红说:“因为甲区有30人不满意,乙区有40人不满意,所以甲区的不满意率比乙区低.”你认为这种说法正确吗?为什么?
3.学习成绩是否理想除了个人的智力因素对于听课效率有一定的影响,还有相当一部分其他因素影响听课效率,比如听课时间、上课形式.现对100名七年级学生做调查结果如下:
(1)学生对某一学科的学习兴趣与听课效率的关系.(表1)
听课效率
学习兴趣
90%以上
70%~90%
50%~70%
50%以下
喜欢
76人
18人
6人
0人
一般
53人
34人
10人
3人
不喜欢
11人
40人
35人
14人
(2)上课形式与听课效率之间的关系.(表2)
效率
90%以上
70%~90%
50%~70%
50%以下
理论课
60
20
15
5
习题课
56
22
16
6
理论习题结合
81
14
4
1
问题:
(1)将表1中的数据制成条形图.
(2)根据上面调查结果,建议老师应采取何种上课方式.
(3)综合全部图表,你对提高听课效率的建议是什么?
4.在日常的学习生活中,小明同学发现学校内存在着浪费纸张的现象,于是他想做一个调查,了解一下同学们是否意识到自己在浪费纸张.小明起草了一份调查问卷(如下).
(1)由于第一次写调查问卷,问卷中有一些不完善的地方,请同学们找出其中的一处,帮他改正.
调查问卷
问卷编号 年 月 日
调查目的
调查有关我校纸张使用的一些情况
调
查
内
容
1.您是否经常只用草稿纸的一面就不再使用了?
(A)是 (B)否
2.您在草稿纸上写的字是否比平时要大?
(A)是 (B)否
3.您是否喜欢有意或无意地在草稿纸上写一些无关紧要的东西?
(A)是 (B)否
4.您每学期大约要用多少个练习本?
(A)10~15个 (B)16~20个
5.您用过的本子中剩余的空白纸页大约有多少?
(A)很少 (B)大约三分之一
(C)大约二分之一 (D)一半以上
6.您对于没有用完的练习本作何用处?
(A)不再管它 (B)把剩余的纸用做草稿纸
(C)撕下剩余纸页钉成新本
7.我觉得可以口头传达的事情没有必要再印成通知,你认为有必要吗?
(A)有必要 (B)无所谓 (C)没必要
8.您在看过通知后一般拿它作什么用?
(A)扔掉 (B)保留
(C)作草稿纸用 (D)其他
9.考试或练习的试题是否应该双面印刷?
(A)是 (B)否
(2)(模拟)全班同学答卷,整理收集到的数据,制成统计表.
(3)描述和分析数据,写一份简单的调查报告.
测试5
1.(1)(2)(3)(4)不太合适,(5)(6)比较合适.
2.(1)1200;
(2)图略(甲区满意人数有500人);
(3)不正确.
∴甲区的不满意率是,乙区的不满意率是,
∴甲区的不满意率比乙区的不满意率高.
3.(1)如图;(2)应该理论习题相结合;
(3)学生要提高学习兴趣,老师注意上课方式.
听课效率人数统计图
4.(1)第7条问题带有本人的主观意愿,改正略;(2)和(3)略.
知识梳理:
一、 统计调查
1、 数据处理的过程
(1) 数据处理一般包括收集数据、整理数据、描述数据和分析数据等过程。
收集数据的方法:a、民意调查:如投票选举 b、实地调查:如现场进行观察、收集、统计数据 c、媒体调查:报纸、电视、电话、网络等调查都是媒体调查。
注意:选择收集数据的方法,要掌握两个要点:①是要简便易行,②要真实、全面。
(2) 数据处理可以帮助我们了解生活中的现象,对未知的事情作出合理的推断和预测。
2、 统计调查的方式及其优点
(1)全面调查:考察 的调查叫做全面调查。
(2)划计法:整理数据时,用 的每一划(笔画)代表一个数据,这种记录数据的方法叫划计法。
例如:统计中编号为1的数据每出现一次记一划,最后记为“正正一”,即共出现11次。
(3)百分比:每个对象出现的次数与总次数的 。
注意:①调查方式有两种:一种是全面调查,另一种是抽样调查。
②划计之和为总次数,百分比之和为1。
③划计法是记录数据常用的方法,根据个人的习惯也可改用其他方法。
全面调查的优点是可靠,、真实,抽样调查的优点是省时、省力,减少破坏性。
1、 抽样调查的要求
为了获得较为准确的调查结果,抽样时要注意样本的广泛性和代表性,即采取随机抽查的方法。
如:请指出下列哪些调查的样本缺乏代表性。
(1) 从具有不同层次文化的市民中,调查市民的法治意识;
(2) 在大学生中调查我国青年的上网情况;
(3) 抽查电信部门的家属,了解市民对曜服务的满意程度。
小结:只有选择具有代表性的样本进行抽样调查,才能了解总体的面貌和特征。
2、 总体和样本
总体:要考查的 对象称为总体。
个体:组成总体的每一个考察对象称为个体。
样本:从 当中抽出的所有实际被调查的对象组成一个样本。
样本容量:样本中 叫样本容量(不带单位)。
如:要了解某校全体学生早晨用餐情况,抽出其中三个班做调查。总体是 ;样本是 ;个体是 。
综合练习:1、为了了解某县七年级2000名学生的身高,从中抽取500名学生进行测量,对这个问题,下面说法正确的是( )
A、2000名学生是总体 B、每个学生是个体
C、抽取500名学生是所抽的一个样本 D、每个学生的身高是个体
分析:要明白统计调查中研究的对象是什么,不要错看对象。
二、直方图
1、数据的频数分布表反映了一组数据中的每个数据出现的频数,从而反映了在数据组中各数据的分布情况。
要全面地掌握一组数据,必须分析这组数据中各个数据的分布情况。
如:1、八年级某班20名男生一次投掷标枪测试成绩如下(单位:m):25,21,23,25,27,29,25,28,30,29,26,24,25,27,26,22,24,25,26,28。
(1)将这20名男生的测试成绩按从小到大排列,统计出每种成绩的数值出现的频数,并制成统计表;
(2)根据统计表回答:
①成绩小于25米的同学有几人?占总人数的百分之几?
②成绩大于28米的同学有几人?占总人数的百分之几?
③这些同学的成绩大部分集中在哪个范围内,占总人数的百分比是多少?
小结:利用频数、频率分布表,可以清楚地反映出一组数据中的每个数据出现的频数和频率,从而反映这些数据的整体分布情况。
2、频数分布直方图
为了直观地表示一组数据的分布情况,可以以频数分布表为基础,绘制分布直方图。
(1) 频数分布直方图简称直方图,它是条形统计图的一种。
(2) 直方图的结构:直方图由横轴、纵轴、条形图的三部分组成。
(3) 作直方图的步骤:
①作两条互相垂直的轴:横轴和纵轴;②
在横轴上划分一引起相互衔接的线段,每条线段表示一组,在线段的左端点标明这组的下限,在最后一组的线段的右端点标明其上限;③在纵轴上划分刻度,并用自然数标记;④以横轴上的每条线段为底各作一个矩形立于数轴上,使各矩形的高等于相应的频数。
如:为了了解某地区八年级学生的身高情况,现随机抽取了60名八年级男生,测得他们的身高(单位:cm)分别为
156 162 163 172 160 141 152 173 180 174 157 174 145 16 153 165 156 167 161 172 178 156 166 155 140 157 167 156 168 150 164 163 155 162 160 168 147 161 157 162 165 160 166 164 154 161 158 164 151 169 169 162 158 163 159 164 162 148 170 161
(1)将数据适当分组,并绘制相应的频数分布直方图;
(2)如果身高在的学生身高为正常,试求落在正常身高范围内学生的百分比。
小结:画频数分布直方图可按以下步骤:①计算数差;②确定组距与组数;③确定组限;④列频数分布表;⑤画频数分布直方图。其中组距和组数的确定没有固定标准,要凭借经验和研究的具体问题决定。一般来说,组数越多越好,但实际操作比较麻烦,当数据在100个以内时,根据数据的特征通常分成5~~12组。
1、下列调查用全面调查方式最合适的是( )
A、调查中小学生学习负担是否过重 B、调查中小学生课外资料花费情况
C、调查某种组奶粉的合格率 D、调查禽流感病例在各省市的分布情况
2、为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题中的样本是( )
A、这批电视机的寿命 B、抽取的100台电视机 C、100 D、抽取的100台电视机的寿命
3、某商场随机抽查了某月6天的营业额,结果分别如下(单位:万元):2.8,3.2,3.4,3.7,3.0,3.1,则这6天的平均营业额为 万元,估算该商场这个月(30天)的总营业额是 万元。
4、某校七年级共有学生600名,为了了解这些学生的视力情况,抽查了40名学生进行测量,在这个事件中:
(1)总体、个体、样本各是什么?
(2)这个抽样调查具有代表性吗?
(3)若具有代表性,且数据在0.9~~1.2范围内的比例为40%,则可估计,该校七年级学生视力在0.9~~1.2范围内的人数约为多少?
5、某校学生在“暑假社会实践”活动中组织学生进行社会调查,并组织评委对学生写出的调查报告进行统计,绘制了统计图如图所示,请根据该图回答下列问题:
(1)学生会共抽取了 份调查报告;
(2)若等第A为优秀,则优秀率为 ;
(3)学生会共收到调查报告1000份,请估计该校有多少份调查报告的等第为E?
分析:调查报告的总份数等于各小组频数之和.
6、某校九年级(2)班课题研究小组对本校九年级全体同学的体育达标(体育成绩60分以上,含60分为达标)情况进行调查,他们对本班50名同学的体育达标情况和其余班级的体育达标情况分别进行调查,数据统计如图所示:
九年级(2)班同学体育达标情况频率分布直方图 九年组其余班级同学体育达标情况统计图
(说明:每组成绩的取值范围中,含最低值不含最高值)
(1) 九年级(2)班同学体育达标率和九年级其余班级同学体育达标率各是多少?
(2) 如果全九年级同学的体育达标率不低于90%,则九年级同学人数不超过多少人?
分析:①条形图和扇形图都能表示体育达标情况;②根据九年级(2)班的学生达标率与九年级学生的达标率和九年级其余班级学生的达标率不同,通过列不等式求出九年级人数的范围。