队列操练中的数学趣题
一次团体操排练活动中,某班45名学生面向教师站成一列横队,老师每次让其中任意6名学生向后转(不论原来方向如何),能否经过若干次后全体学生都背向教师站立?如果能够的话,请你设计一种方案;如果不能够,请说明理由。
问题似乎与数学无关,却又难以入手。注意到学生站立有两个方向,与具有相反意义的量有关,向后转又可想像为进行一次运算,或者说改变一次符号。我们能否设法联系有理数的知识进行讨论呢?
让我们再发挥一下想像:假设每个学生胸前有一块号码布,上写“+1”,背后有一块号码布,上写“-1”,那么一开始全体学生面向老师,胸前45个“+1”的“乘积”是“+1”。如果最后全部背向老师,则45个“-1”的“乘积”是“-1”。
再来观察每次6名学生向后转进行的是什么“运算”。我们也设想老师不叫“向后转”,而将这6名学生对着老师的数字都“乘以(-1)”。
这样问题就解决了:每次“运算”乘上6个(-1),即乘上了,也就是(+1),故45个数的乘积不变(数学上称为不变量),始终是(+1)。所以,要乘积变为(-1)是不可能的。
一个难题,被有理数的简单运算别出心裁地解决了。有理数的知识多么有用!可同学们的想像力更重要。