第三章 三角形
3探索三角形全等的条件(第1课时)
沈阳市敬业中学 戚越英
一、学生知识状况分析
学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等和全等三角形等,对本节课要学习的三角形的稳定性和三角形全等条件中的“边边边”来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形的全等和全等三角形的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析
教科书基于学生对三角形全等的认识,提出了本课的具体学习任务:了解三角形的稳定性和经历探索三角形全等条件的过程,掌握三角形全等“边边边”的条件,并能应用这一条件解决一些实际的问题。但这仅仅是这堂课外显的具体教学目标,本课内容从属于“空间与图形”这一数学学习领域,因而务必服务于“空间与图形”的总体目标:“学生将探索基本图形的基本性质及其相互关系,进一步丰富对空间图形的认识和感受”,同时也应力图在学习中逐步达成学生的有关情感态度目标。为此,本节课的教学目标是:
(1)知识与技能:了解三角形的稳定性,三角形全等“边边边”的条件, 经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;
(2)过程与方法:使学生在自主探索三角形全等的过程中,经历画图、观察、比较、交流等过程,从而获得正确的学习方式和良好的情感体验。
(3)情感与态度:培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。
三、教学过程分析
6
本节课设计了七个教学环节:课前准备、情境引入、合作学习、课内链接、课堂小结、问题解决、布置作业。
第一环节 课前准备
活动内容:动手操作(前一个双休日布置。课堂上要用到的三角形、四边形等模型,在课堂上现场制作有一定的困难,且时间也较长,所以要求学生提前准备。学生可以个人,也可以以小组为单位准备。)
以4人活动小组为单位,要求学生每小组制作完成三角形、四边形、五边形和六边形四个模型
材料:若干小木条(或硬纸板),钉子(大头钉)
活动目的:通过此活动,培养学生的动手能力,在实践操作中对于三角形形状的固定有初步的认识,再在教学中鼓励学生思考三角形为什么具有稳定性,逐步树立推理意识。在实际操作中培养学生善于观察、乐于探索的学习品质及与他人合作交流的意识;
实际教学效果:实际教学时,在学生探索完三角形全等的条件“边边边”后,再讨论三角形所具有的性质时,拿出此模型。学生拿出了自己制作的模型,虽然制作有些粗糙,但有亲手制作的模型,学生更愿意参与到讨论中来,效果要明显优于教学模型,尤其是对比可以动来动去的四边形、五边形、六边形来说,学生在摆弄之中,更能深刻的体会出只有三角形具有稳定性。
第二环节 情境引入
活动内容:出示幻灯片,两个全等的三角形,让学生找出其中相等的边和角,复习全等三角形所具有的性质。然后提出问题:要画一个三角形与小明画的三角形全等需要什么条件?一定要知道所有的边长和所有的角度吗?条件能否尽可能的少?是需要一个条件?两个条件?三个条件?还是更多的条件?
活动目的:通过复习,使学生回忆起所学的和三角形全等相关的一些性质和概念。并通过问题的提出引导学生思考,鼓励学生通过画图、观察、比较、推理、交流等方式,在条件由少到多的过程中逐步探索出最后的结论。
实际教学效果:学生积极投入思考,开篇就为学生创设了一个自由、宽松的讨论氛围。
第三环节 合作学习
6
活动内容:
一、做一做.
1. 只给一个条件(一条边或一个角)画三角形时,大家画出的三角形一定全等吗?
2. 给出两个条件画三角形时,有几种可能的情况?每种情况下作出的三角形一定全等吗?分别按照下面的条件做一做。(1) 三角形的一个内角为30°,一条边为3cm;(2) 三角形的两个内角分别为30°和 50°;(3) 三角形的两条边分别为4cm,6cm.
二、议一议. 如果给出三个条件画三角形,你能说出有哪几种可能的情况?
三、做一做.
1.已知一个三角形的三个内角分别为40°,60°和80°,你能画出这个三角形吗?把你画的三角形与同伴画出的进行比较,它们一定全等吗?
2.已知一个三角形的三条边分别为4cm,5cm和7cm,你能画出这个三角形吗?把你画的三角形与同伴画出的进行比较,它们一定全等吗?
活动目的:以问题串的形式引导学生逐步深入的思考可以使三角形全等的条件,问题的提出从条件的由少到多,由简到繁,一步步深入、引导,通过一系列的活动最终得出正确的结论。
实际教学效果:对于只给出一个条件时结论是显而易见的。因此,只需学生想象此时的情况即可,无需实际画出三角形。当给出两个条件时,学生也不难得出结论,教学中让学生实际去画一画,感受反例的作用。这时学生发现两个条件都不能使结论成立,那么三个条件呢?引出议一议。由于三个条件的组合较多,所以,先让学生组合一下条件。组合时提醒学生按照一定的顺序、规律进行,不重不漏。让学生在讨论的过程中体验分类的思想。讨论出结果后,本节课只研究三个角和三条边的情况,也就是第二个做一做。对于已知三个内角的情况,学生能比较容易的举出反例。而对于已知三边的研究则是本节课的重点,也是难点。由于七年级学生在作图方面没有太深的基础,所以这里的作图,可以利用一切可以利用的工具,如:直尺,量角器,等等。每人完成后,先小组比较,然后全班比较,根据它们都重合的特点,使学生承认“边边边”的条件。(这里有的学生可能在作图上有困难,如果出现困难,可以用小木条、细纸条等摆一摆。)
6
第四环节 课内链接
活动内容:
1. 两个锐角对应相等的两个直角三角形全等吗?为什么?
D
A
2. 已知:如图AB=CD,AD=BC,E,F是BD上两点,且AE=CF, DE=BF, 那么图中共有几对全等的三角形?说明理由.
F
E
C
B
3. 已知:如图AB=CD,AD=BC.则∠A与∠C相等吗?为什么?
D
A
C
B
活动目的:巩固练习,对课上的探索结论有更深一步的认识。例1的设计是使学生练习使用举反例这一解题方法,对于这类可以猜想出结论是否定答案的题,可以提示学生尽量去选择身边常见的较为简单的例子作为反例,例如这道题,就可以引导学生观察大小不同的两个三角板。学生善于发现、找到这些简单的例子,有助于学生更好的应用举反例的方法。 通过例2,例3主要是让学生练习去应用本节课学习的利用三边判定全等的方法。并在例3中给出完整的答案,指导学生答题要规范。
实际教学效果: 例1较为简单,一般的学生都能想到这两个直角三角形不全等,一部分学生可以举出较简单的例子;例题2,学生可以通过观察法先得出结论,然后结合本节课的学习内容作出口答;例3较为复杂,对于一般学生很难马上想到,这时,教师可以给出较为详尽的分析,帮学生屡清思路,并板演解题过程。
第五环节 课堂小结
活动内容: 让学生自己谈收获,可以是知识方面的,也可以是探索方法的,应鼓励学生从多方面思考问题。
6
活动目的:教师带领,回顾反思本节课对知识的研究探索过程,小结方法及相关结论,提炼数学思想,掌握数学规律。
A(R)
B
D
C
E
Q
P
实际教学效果:给学生一定的时间去反思回顾,启发学生从知识技能、数学方法、情感态度进行总结,让学生们畅所欲言,培养学生的归纳、概括能力。然后老师点评,使学生在获得知识的同时,学会数学方法,增强学习兴趣和合作意识。
第六环节 问题解决
活动内容:仪器ABCD可以用来平分一个角,其中AB=AD,BC=DC,将仪器上的点A与
∠PRQ的顶点R重合,调整AB和AD,使它们落在角的两边上,沿AC画一条射线AE,AE就是∠PRQ的平分线。你能说明其中的道理吗?
活动目的:再次渗透分类的数学思想,体会分析问题的方法,积累数学活动的经验
实际教学效果:对有能力的学生要求把实际问题抽象成数学问题,根据自己的理解写出推理过程。对一般学生要求口头表达理由,并能说明每一步的根据。
第七环节 布置作业
作业分为必做题和选做题,必做题属于知识性的,可以巩固练习本节课的教学内容及相关方法;选作题有一定难度,且结合实际情况,有些学生不方便上网的,可以不做这一部分的习题。
1.必做题
(1) P183:6;
(2)一个四边形的门框,为使其牢固,请用木条加固,你能找出几种方法?最少用几根木条?
2.选做题
(1)网上查找一些有关三角形稳定性的例子;
(2)你能否利用本节课的探索方法,找出其它可以使三角形全等的条件。
6
四、教学设计反思
1. 给学生展示自我的空间。本节课的设计本着以教师为主导、学生为主体,以知识为载体、培养学生的思维能力为重点的教学思想。教师以探究任务引导学生自学自悟的方式,提供给学生自主合作探究的舞台。在经历知识的发现过程中,培养了学生分类、探究、合作、归纳的能力。课堂上把激发学生学习热情和获得学习的能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度。
2. 在课堂上要给予学生充分的时间去思考、动手实践,而不是使合作流于形式。要把合作交流的空间真正的还给学生。教师在课堂中还要照顾到每一名学生,让全体的学生都动起来。在把他们的结论互相比较之前,应该留给学生足够的时间,使大部分的学生都能完成画图的工作,不能以一些思维活跃的学生的完成时间作为标准,剥夺了其他学生的操作时间。教师还应对画图有困难的学生给予适当的指导。
3. 本节课教学内容比较丰富,具体操作时间相对比较紧张,对教学环节恰当的调控可以有效的完成本节课的教学目标,预见性的对于整体合作较快的集体,可以把课前准备的部分安排在课上;如果课上进行的较慢,则可以适当的删减课内链接的那一部分习题,着重于知识理论的建立。
6