二次函数的图象和性质教案4(新人教版)
加入VIP免费下载

本文件来自资料包: 《二次函数的图象和性质教案4(新人教版)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
二次函数的图象和性质教案4(新人教版)‎ 教 学 目 标 知 识 和 能 力 ‎1.使学生能利用描点法画出二次函数y=a(x—h)2的图象。‎ 过 程 和 方 法 让学生经历二次函数y=a(x-h)2性质探究的过程,理解函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的关系。‎ 情 感 态 度 价值观 教学重点 会用描点法画出二次函数y=a(x-h)2的图象,理解二次函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的关系 教学难点 理解二次函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的相互关系 教学准备 教师 多媒体课件 学生 ‎“五个一”‎ 课 堂 教 学 程 序 设 计 设计意图 一、提出问题 ‎1.在同一直角坐标系内,画出二次函数y=-x2,y=-x2-1的图象,并回答:‎ ‎ (1)两条抛物线的位置关系。‎ ‎ (2)分别说出它们的对称轴、开口方向和顶点坐标。‎ ‎ (3)说出它们所具有的公共性质。 ‎ ‎ 2.二次函数y=2(x-1)2的图象与二次函数y=2x2的图象的开口方向、对称轴以及顶点坐标相同吗?这两个函数的图象之间有什么关系?‎ 二、分析问题,解决问题 问题1:你将用什么方法来研究上面提出的问题?‎ ‎ (画出二次函数y=2(x-1)2和二次函数y=2x2的图象,并加以观察)‎ ‎ 问题2:你能在同一直角坐标系中,画出二次函数y=2x2与y=2(x-1)2的图象吗?‎ ‎ 教学要点 ‎ 1.让学生完成列表。‎ ‎ 2.让学生在直角坐标系中画出图来: 3.教师巡视、指导。‎ 问题3:现在你能回答前面提出的问题吗?‎ 开口方向 对称轴 顶点坐标 y=2x2‎ y=2(x-1)2‎ 教学要点 ‎1.教师引导学生观察画出的两个函数图象.‎ 根据所画出的图象,完成以下填空:‎ ‎ 2.让学生分组讨论,交流合作,各组选派代表发表意见,达成共识:函数y=2(x-1)2与y=2x2的图象、开口方向相同、对称轴和顶点坐标不同;函数y=2(x一1)2的图象可以看作是函数y=2x2的图象向右平移1个单位得到的,它的对称轴是直线x=1,顶点坐标是(1,0)。‎ ‎ 问题4:你可以由函数y=2x2的性质,得到函数y=2(x-1)2的性质吗?‎ ‎ 教学要点 ‎1.教师引导学生回顾二次函数y=2x2的性质,并观察二次函数y=2(x-1)2的图象;‎ ‎2.让学生完成以下填空:‎ ‎ ‎ 2‎ ‎ 当x______时,函数值y随x的增大而减小;当x______时,函数值y随x的增大而增大;当x=______时,函数取得最______值y=______。‎ 三、做一做 问题5:你能在同一直角坐标系中画出函数y=2(x+1)2与函数y=2x2的图象,并比较它们的联系和区别吗?‎ ‎ 教学要点 ‎ 1.在学生画函数图象的同时,教师巡视、指导;‎ ‎ 2.请两位同学上台板演,教师讲评;‎ ‎ 3.让学生发表不同的意见,归结为:函数y=2(x+1)2与函数y=2x2的图象开口方向相同,但顶点坐标和对称轴不同;函数y=2(x+1)2的图象可以看作是将函数y=2x2的图象向左平移1个单位得到的。它的对称轴是直线x=-1,顶点坐标是(-1,0)。‎ ‎ 问题6;你能由函数y=2x2的性质,得到函数y=2(x+1)2的性质吗?‎ ‎ 教学要点 ‎ 让学生讨论、交流,举手发言,达成共识:当x<-1时,函数值y随x的增大而减小;当x>-1时,函数值y随x的增大而增大;当x=一1时,函数取得最小值,最小值y=0。 ‎ ‎ 问题7:函数y=-(x+2)2图象与函数y=-x2的图象有何关系?‎ ‎ 问题8:你能说出函数y=-(x+2)2图象的开口方向、对称轴和顶点坐标吗?‎ ‎ 问题9:你能得到函数y=(x+2)2的性质吗?‎ ‎ 教学要点 让学生讨论、交流,发表意见,归结为:当x<-2时,函数值y随x的增大而增大;‎ 当x>-2时,函数值y随工的增大而减小;当x=-2时,函数取得最大值,最大值y=0。‎ 四、课堂练习: P8练习。‎ 五、小结:‎ ‎1.在同一直角坐标系中,函数y=a(x-h)2的图象与函数y=ax2的图象有什么联系和区别?‎ ‎2.你能说出函数y=a(x-h)2图象的性质吗?‎ ‎3.谈谈本节课的收获和体会。‎ 作业 设计 必做 教科书P14:5(2)‎ 选做 练习册P115-116‎ 教学 反思 2‎

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料