课 题
实际问题与二次函数教案1(新人教版)
备课日期
年 月 日
课 型
新授
教
学
目
标
知识与技能
1.会建立直角坐标系解决实际问题;
2.会解决桥洞水面宽度问题
过程与方法
经历数学建模的基本过程,会运用二次函数求实际问题中的最大值或最小值。
情感态度
与价值观
体会二次函数是一类最优化问题的重要数学模型,感受数学的应用价值。
教学重点
会建立直角坐标系解决实际问题;
教学难点
会解决桥洞水面宽度问题
教学方法
启发式
教学用具
多 媒 体
课时安排
1
教 学 内 容
设计与反思
4
教 学 内 容
设计与反思
一、基本知识练习
1.以抛物线的顶点为原点,以抛物线的对称轴为y轴建立直角坐标系时,可设这条抛物线的关系式为______________________________.
2.拱桥呈抛物线形,其函数关系式为y=-x2,当拱桥下水位线在AB位置时,水面宽为12m,这时水面离桥拱顶端的高度h是( )
A.3m B.2m C.4m D.9m
3.有一抛物线拱桥,已知水位线在AB位置时,水面的宽为4米,水位上升4米,就达到警戒线CD,这时水面宽为4米.若洪水到来时,水位以每小时0.5米的速度上升,则水过警戒线后几小时淹没到拱桥顶端M处?
二、课堂练习
1.一座拱桥的轮廓是抛物线(如图①所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.
(1)将抛物线放在所给的直角坐标系中(如图②所示),其关系式y=ax2+c的形式,请根据所给的数据求出a、c的值;
(2)求支柱MN的长度;
(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m,高3m的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.
4
图①
2.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是10m.
(1)建立如图所示的直角坐标系,求此抛物线的解析式.
(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1h时,忽然接到紧急通知:前方连降暴雨,造成水位以每小0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米?
4
三、教学效果追忆:
4