用配方法求解一元二次方程(二)教案及反思(北师大版)
加入VIP免费下载

本文件来自资料包: 《用配方法求解一元二次方程(二)教案及反思(北师大版)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
第二章 一元二次方程 ‎2.用配方法求解一元二次方程(二)‎ 一、学生知识状况分析 学生的知识技能基础:初二上学期,学生已经学习过开平方根的定义以及完全平方公式,在上节课学生初步学习了配方法解二次项系数为1的一元二次方程,这些为本节课学习解二次项系数不为1的方程打下较好的基础。‎ 学生活动经验基础:上一课时,学生已经经历了二次项系数为1的方程的解的过程,已经体会到其中转化的思想方法,这些都成为完成本课任务的活动经验基础。‎ 二、教学任务分析 在课程安排上这节课的具体学习任务:用配方法解二次项系数不为1的一元二次方程以及利用一元二次方程解决实际问题。这节课内容从属于“方程与不等式”这一数学学习领域,因而务必服务于方程教学的远期目标:“让学生经历由具体问题抽象出方程的过程,体会方程是刻画现实世界中数量关系的一个有效模型,并在解一元二次方程的过程中体会转化的数学思想”,为此,本节课的教学目标是:‎ ‎①经历配方法解一元二次方程的过程,获得解二元一次方程的基本技能;‎ ‎②经历用配方法解二次项系数不为1的一元二次方程的过程,体会其中的化归思想;‎ ‎③能利用一元二次方程解决有关的实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养分析问题、解决问题的意识和能力.‎ 三、教学过程分析 本节课设计了五个教学环节:第一环节:复习回顾;第二环节:情境引入;第三环节:讲授新课;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业。‎ 第一环节 复习回顾 活动内容:回顾配方法解二次项系数为1的一元二次方程的基本步骤。‎ 活动目的:回顾配方法的基本步骤,为本节课研究二次项系数不为1的二次方程的解法打下基础。‎ 实际效果:教学中为了便于学生回顾,可以通过举例的形式,帮助学生回顾并整理步骤,例如,x2-6x-40=0‎ 移项,得 x2-6x= 40‎ 方程两边都加上32(一次项系数一半的平方),得 ‎ x2-6x+32=40+32‎ 即 (x-3)2=49‎ 开平方,得 x-3 =±7‎ 即 x-3=7或x-3=-7‎ 所以 x1=10,x2=-4‎ 学生一般都能整理出配方法解方程的基本步骤:‎ 通过对这个方程基本步骤地熟悉学生们顺畅的理清思路,掌握了每一步的理论依据,增强了解题的信心,达到预期的目的。‎ 4‎ 配方法的两节课连贯性强,作为一种新的方法,学生在新授期间应多接触,熟练掌握基本的步骤,掌握每一步的原理,这样会增强学生对这个知识点的驾驭能力。一般的一元二次方程配方解法的步骤(移项,配方,开平方,求解)及注意事项。移项的目的是将二次项和一次项调整到等号的左边,常数项调整到右边;配方是将方程的两边添加一个常数项(一次项系数一半的平方)原理是根据公式a+2ab+b=(a+b)进行的;开平方的原理是平方根的定义,需要注意一个正数有两个平方根,它们是互为相反数;求解的过程是解两个一元一次方程,要注意符号的变化。‎ 第二环节:情境引入 活动内容:1.将下列各式填上适当的项,配成完全平方式口头回答.‎ ‎1.x2+2x+________=(x+______)2‎ ‎2.x2-4x+________=(x-______)2‎ ‎3.x2+________+36=(x+______)2‎ ‎4.x2+10x+________=(x+______)2‎ ‎5. x2-x+________=(x-______)2‎ ‎2.请同学们比较下列两个一元二次方程的联系与区别 ‎1.x2+6x+8=0‎ ‎2.3x2+18x+24=0‎ 探讨方程2的应如何去解呢?‎ 活动目的:通过对第一部分的五个口答练习题的训练,熟悉完全平方式的三项与平方形式的联系,第二部分的两个习题之间的区别是方程2的二次项系数为3,不符合上节课解题的基本形式,联系是当方程两边同时除以3以后,这两个方程式同解方程。学生们作了方程的变形以后,对二次项系数不为1的方程的解法有了初步的感受和思路。‎ 实际效果:学生对第一部分五个口答题的积极抢答,调动了各自的思维,进入了积极学习的状态;比较第二部分中两个方程系数之间的区别与联系,学生们发现二次项系数为1仅是方程中的一小部分,怎样将其它类型的方程转化成这类方程非常关键,这个比较也点明了转化的方向和思路,为后续解这个方程做好了充分的铺垫,学生解决它已是轻车熟路的事情。‎ 第三环节:讲授新课 活动内容1:讲解例题 例2 解方程3x2+8x-3=0‎ 解:方程两边都除以3,得 移项,得 配方,得 ‎ 4‎ 活动目的:通过对例2的讲解,继续拓展规范配方法解一元二次方程的过程.让学生充分理解掌握用配方法解一元二次方程的基本思路,关键是将方程转化成形式,特别强调当一次项系数为分数时,所要添加常数项仍然为一次项系数一半的平方,理解这样做的原理,树立解题的信心。另外,得到 后,在移项得到要注意符号问题,这一步在计算过程中容易出错。‎ 实际效果:经过这一环节,学生对配方法的特点有了深入的了解,通过例题的处理,进一步把握了配方法的基本思路,熟悉了其步骤。‎ 活动内容2:应用提高:‎ 做一做:一小球以‎15m/s的初速度竖直向上弹出,它在空中的高度h(m)与时间t(S)满足关系:h=15t-5t2,小球何时能达到‎10米的高度?‎ 解:根据题意得 ‎ 15t-5t2=10‎ 方程两边都除以-5,得 ‎ t2-3t=-2‎ 配方,得 活动目的:在前边学习的基础上,通过例3进一步提高学生分析问题,解决问题的能力,帮助学生熟练掌握配方法在实际问题中的应用,也为后续学习做好铺垫。‎ 实际效果:大部分学生通过独立思考,根据题意很快列出了方程,解方程的过程比较顺畅,最终得到两个时间t的值分别为1和2,根据实际情景怎样理解这两个时间呢?这就是很好的数学应用,体现数学的价值,很多学生能想象出当时间为1秒时,小球上升到离出发点10米的地方,当时间为2秒钟时,小球是处于下降状态,离出发点也是10米,激发了学生学习数学的热情。‎ 第四环节:练习与提高 活动内容:课本习题2.4问题解决2.‎ 印度古算术中有这样一首诗:“一群猴子分两队,高高兴兴在游戏,八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮。告我总数有多少,两队猴子在一起?大意是说:一群猴子分两队,一队猴子数是猴子总数的八分之一的平方,另一队猴子数是12,那么猴子的总数是多少?请同学们解决这个问题。‎ 解:可设猴子的总数是x,由题意可得 ‎(x)2+12=x 4‎ 解得x1=16 x2=48‎ 答:这群猴子可能是16只,也可能是48只。‎ 活动目的:对利用一元二次方程解决实际问题进行巩固练习,培养学生的阅读能力、数学建模能力。‎ 实际效果:这个题中的等量关系不易发现,课堂上,我给学生们适当的空间,培养学生独立思考的习惯,然后鼓励思维敏捷的同学展示自己的思路,用学生的语言带动学生们学习。‎ 第五环节:课堂小结 活动内容:1.学生总结解一元二次方程的基本步骤;‎ ‎2.利用一元二次方程解决实际问题的思路,对于结果的理解。‎ 活动目的:鼓励学生结合本节课的学习,谈自己的收获与感想。‎ 实际效果:学生畅所欲言谈自己的切身感受与实际收获,掌握了配方法的基本思路和过程。‎ 第六环节:布置作业 ‎⑴课本42页习题2.4第1题;‎ ‎⑵一个人的血压与其年龄及性别有关,对女性来说,正常的收缩压p(毫米汞柱)与年龄x(岁)大致满足关系:p=0.01x2+0.05x+107.如果一个女性的收缩压为120毫米汞柱,那么她的年龄大概是多少?‎ ‎⑶有能力的同学请课余时间用配方法交流探究方程: ax2+bx+c=0 (a不为0)的解法.‎ 四、教学反思 ‎1、创造性的使用了教材:‎ 这节课作为配方的第二节主要是以习题训练为重点,所以我依照书上的例题为重点展示了解方程的基本步骤,另外,添加了辅助性的3个习题;将书上的做一做转化成一个例题,让学生体会利用一元二次方程解决问题的感受;另在作业中配套了一道血压方面的数学问题,学生可以体会到一元二次方程与我们的现实生活息息相关。‎ ‎2、注意改进的方面 基础较好的学生对于基础性的计算比较快,与此同时,班级中的有7—8名学生对于数据计算有懒惰的思想,速度慢,时间长,如果不能及时解决,这部分学生将落队,或者整节课堂冗长无味,因此如何调控教学进度成为教学中的一个难点。我的办法是老师准备好几个不同层次的习题,当大部分学生做完后,可以为他们提供更高层次的习题,继续引领他们的思维前进,而加强对基础薄弱的同学动手动脑的监督。‎ 4‎

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料