2018届高考数学大一轮复习--基本不等式(理科带解析)
加入VIP免费下载

本文件来自资料包: 《2018届高考数学大一轮复习--基本不等式(理科带解析)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
第二节直接证明与间接证明、数学归纳法 本节主要包括3个知识点:‎ ‎1.直接证明; 2.间接证明;3.数学归纳法.‎ 突破点(一) 直接证明 基础联通 抓主干知识的“源”与“流” ‎ 内容 综合法 分析法 定义 利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立.‎ 从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止 思维过程 由因导果 执果索因 框图表示 →→…→ →→…→ 书写格式 因为…,所以…或由…,得…‎ 要证…,只需证…,即证…‎ 考点贯通 抓高考命题的“形”与“神”‎ 综合法 综合法是从已知条件出发,逐步推向结论,综合法的适用范围是:‎ ‎(1)定义明确的问题,如证明函数的单调性、奇偶性,求证无条件的等式或不等式;‎ ‎(2)已知条件明确,并且容易通过分析和应用条件逐步逼近结论的题型.‎ ‎[例1] (2017·武汉模拟)已知函数f(x)=(λx+1)ln x-x+1.‎ ‎(1)若λ=0,求f(x)的最大值;‎ ‎(2)若曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直,证明:>0.‎ ‎[解] (1)f(x)的定义域为(0,+∞).‎ 当λ=0时,f(x)=ln x-x+1.‎ 则f′(x)=-1,令f′(x)=0,解得x=1.‎ 当01时,f′(x)0.‎ 综上可知,>0.‎ ‎[方法技巧] 综合法证题的思路 分析法 分析法是逆向思维,当已知条件与结论之间的联系不够明显、直接,或证明过程中需要用到的知识不太明确、具体时,往往采用分析法,特别是含有根号、绝对值的等式或不等式,从正面不易推导时,常考虑用分析法.‎ ‎[例2] 已知a>0,证明 -≥a+-2.‎ ‎[证明] 要证 -≥a+-2,‎ 只需证 ≥-(2-).‎ 因为a>0,所以-(2-)>0,‎ 所以只需证2≥2,‎ 即2(2-)≥8-4,只需证a+≥2.‎ 因为a>0,a+≥2显然成立当且仅当a==1时,等号成立,所以要证的不等式成立.‎ ‎[方法技巧]‎ 分析法证题的思路 ‎(1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.‎ ‎(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.‎ 能力练通 抓应用体验的“得”与“失” ‎ ‎1.[考点一]命题“对于任意角θ,cos4θ-sin4θ=cos 2θ”的证明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos 2θ”过程应用了(  )‎ A.分析法 B.综合法 C.综合法、分析法综合使用 D.间接证明法 解析:选B 因为证明过程是“从左向右”,即由条件逐步推向结论,故选B.‎ ‎2.[考点一](2017·广州调研)若a,b,c为实数,且a<b<0,则下列命题正确的是(  )‎ A.ac2<bc2 B.a2>ab>b2‎ C.< D.> 解析:选B a2-ab=a(a-b),‎ ‎∵a<b<0,∴a-b<0,‎ ‎∴a(a-b)>0,即a2-ab>0,∴a2>ab.①‎ 又∵ab-b2=b(a-b)>0,∴ab>b2,②‎ 由①②得a2>ab>b2.‎ ‎3.[考点一]已知实数a1,a2,…,a2 017满足a1+a2+a3+…+a2 017=0,且|a1-‎2a2|=|a2-‎2a3|=…=|a2 017-‎2a1|,证明:a1=a2=a3=…=a2 017=0.‎ 证明:根据条件知:(a1-‎2a2)+(a2-‎2a3)+(a3-‎2a4)+…+(a2 017-‎2a1)=-(a1+a2+a3‎ ‎+…+a2 017)=0.①‎ 另一方面,令|a1-‎2a2|=|a2-‎2a3|=|a3-‎2a4|=…=|a2 017-‎2a1|=m,‎ 则a1-‎2a2,a2-‎2a3,a3-‎2a4,…,a2 017-‎2a1中每个数或为m或为-m.‎ 设其中有k个m,(2 017-k)个-m,则 ‎(a1-‎2a2)+(a2-‎2a3)+(a3-‎2a4)+…+(a2 017-‎2a1)=k×m+(2 017-k)×(-m)=(2k-2 017)m.②‎ 由①②知:(2k-2 017)m=0.③‎ 而2k-2 017为奇数,不可能为0,所以m=0.‎ 于是知:a1=‎2a2,a2=‎2a3,a3=‎2a4,…,a2 016=‎2a2 017,a2 017=‎2a1.‎ 所以a1=22 017·a1,即得a1=0.‎ 从而a1=a2=a3=…=a2 017=0.命题得证.‎ ‎4.[考点二]已知m>0,a,b∈R,求证:2≤.‎ 证明:因为m>0,所以1+m>0.‎ 所以要证原不等式成立,只需证(a+mb)2≤(1+m)·(a2+mb2),‎ 即证m(a2-2ab+b2)≥0,即证m(a-b)2≥0,即证(a-b)2≥0,而(a-b)2≥0显然成立,故原不等式得证.‎ 突破点(二) 间接证明 基础联通 抓主干知识的“源”与“流” ‎ ‎1.反证法 假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.‎ ‎2.用反证法证明问题的一般步骤 第一步 分清命题“p⇒q”的条件和结论 第二步 作出命题结论q相反的假设綈q 第三步 由p和綈q出发,应用正确的推理方法,推出矛盾结果 第四步 断定产生矛盾结果的原因在于开始所作的假设綈q不真,于是结论q成立,从而间接地证明了命题p⇒q为真 ‎3.常见的结论和反设词 原结论词 反设词 至少有一个 一个都没有 至多有一个 至少有两个 至少有n个 至多有(n-1)个 至多有n个 至少有(n+1)个 都是 不都是 对任意x成立 存在某个x不成立 对任意x不成立 存在某个x成立 p或q 綈p且綈q p且q 綈p或綈q 不都是 都是 考点贯通 抓高考命题的“形”与“神” ‎ 证明否定性命题 ‎[例1] 已知数列{an}的前n项和为Sn,且满足an+Sn=2.‎ ‎(1)求数列{an}的通项公式;‎ ‎(2)求证:数列{an}中任意三项不可能按原来顺序成等差数列.‎ ‎[解] (1)当n=1时,a1+S1=‎2a1=2,则a1=1.‎ 又an+Sn=2,‎ 所以an+1+Sn+1=2,‎ 两式相减得an+1=an,‎ 所以{an}是首项为1,公比为的等比数列,‎ 所以an=.‎ ‎(2)证明:假设存在三项按原来顺序成等差数列,记为ap+1,aq+1,ar+1(pb与aa ‎ C.c>a>b D.a>c>b 解析:选A ∵a=-=,b=-=,c=-=,且+>+>+>0,∴a>b>c.‎ ‎[练常考题点——检验高考能力]‎ 一、选择题 ‎1.已知函数f(x)=x,a,b为正实数,A=f,B=f(),C=f,则A,B,C的大小关系为(  )‎ A.A≤B≤C B.A≤C≤B C.B≤C≤A D.C≤B≤A 解析:选A 因为≥≥,又f(x)=x在R上是单调减函数,故f≤f()≤f,即A≤B≤C.‎ ‎2.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,若x1+x2>0,则f(x1)+f(x2)的值(  )‎ A.恒为负值 B.恒等于零 C.恒为正值 D.无法确定正负 解析:选A 由f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,可知f(x)是R上的单调递减函数,由x1+x2>0,可知x1>-x2,f(x1)c≥b C.c>b>a D.a>c>b 解析:选A ∵c-b=4-‎4a+a2=(2-a)2≥0,∴c≥b.已知两式作差得2b=2+‎2a2,即b=1+a2.∵1+a2-a=2+>0,∴1+a2>a.∴b=1+a2>a.∴c≥b>a,故选A.‎ ‎4.平面内有n条直线,最多可将平面分成f(n)个区域,则f(n)的表达式为(  )‎ A.n+1 B.2n C. D.n2+n+1‎ 解析:选C 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;…;n条直线最多可将平面分成1+(1+2+3+…+n)=1+=个区域.‎ ‎5.已知a,b∈R,m=,n=b2-b+,则下列结论正确的是(  )‎ A.m≤n B.m≥n ‎ C.m>n D.mb,则f(f(b))>f(b)>b,与题意不符,‎ 若f(b)0的解集为(-2,1).‎ 参考上述解法,若关于x的不等式+

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料