天添资源网 http://www.ttzyw.com/
21.2.2 公式法(1)
判别一元二次方程根的情况
教学内容
用b2-4ac大于、等于0、小于0判别ax2+bx+c=0(a≠0)的根的情况及其运用.
教学目标
掌握b2-4ac>0,ax2+bx+c=0(a≠0)有两个不等的实根,反之也成立;b2-4ac=0,ax2+bx+c=0(a≠0)有两个相等的实数根,反之也成立;b2-4ac0、b2-4ac=0、b2-4ac0一元二次方程有两个不相等的实根;b2-4ac=0一元二次方程有两个相等的实数;b2-4ac0,有两个不相等的实根;(2)b2-4ac=12-12=0,有两个相等的实根;(3)b2-4ac=│-4×4×1│=0(0时,根据平方根的意义,等于一个具体数,所以一元一次方程的x1=≠x1=,即有两个不相等的实根.当b2-4ac=0时,根据平方根的意义=0,所以x1=x2=,即有两个相等的实根;当b2-4ac0时,一元二次方程ax2+bx+c=0(a≠0)有两个不相等实数根即x1=,x2=.
天添资源网 http://www.ttzyw.com/
天添资源网 http://www.ttzyw.com/
(2)当b-4ac=0时,一元二次方程ax2+bx+c=0(a≠0)有两个相等实数根即x1=x2=.
(3)当b2-4ac0
∴方程有两个不相等的实根.
三、巩固练习
不解方程判定下列方程根的情况:
(1)x2+10x+26=0 (2)x2-x-=0
(3)3x2+6x-5=0 (4)4x2-x+=0
(5)x2-x-=0 (6)4x2-6x=0
(7)x(2x-4)=5-8x
四、应用拓展
例2.若关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示).
分析:要求ax+3>0的解集,就是求ax>-3的解集,那么就转化为要判定a的值是正、负或0.因为一元二次方程(a-2)x2-2ax+a+1=0没有实数根,即(-2a)2-4(a-2)(a+1)