2019年人教版九年级上册数学22.3 实际问题与二次函数程教案(3份)
加入VIP免费下载

本文件来自资料包: 《2019年人教版九年级上册数学22.3 实际问题与二次函数程教案(3份)》 共有 3 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
天添资源网 http://www.ttzyw.com/‎ ‎22.3 实际问题与二次函数 第1课时 几何图形的最大面积 ‎1.经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系.‎ ‎2.会运用二次函数求实际问题中的最大值或最小值.‎ ‎3.能应用二次函数的性质解决图形中最大面积问题.‎ ‎                   ‎ 一、情境导入 孙大爷要围成一个矩形花圃.花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米,矩形ABCD的面积为S平方米.当x为何值时,S有最大值?并求出最大值.‎ 二、合作探究 探究点:最大面积问题 ‎【类型一】利用二次函数求最大面积 ‎ 小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.‎ ‎(1)求S与x之间的函数关系式,并写出自变量x的取值范围;‎ ‎(2)当x是多少时,矩形场地面积S最大?最大面积是多少?‎ 解析:利用矩形面积公式就可确定二次函数.(1)矩形一边长为x,则另一边长为,从而表示出面积;(2)利用配方法求出顶点坐标.‎ 解:(1)根据题意,得S=·x=-x2+30x.自变量x的取值范围是0<x<30.‎ ‎(2)S=-x2+30x=-(x-15)2+225,∵a=-1<0,∴S有最大值,即当x=15(米)时,S最大值=225平方米.‎ 方法总结:二次函数与日常生活的例子还有很多,体现了二次函数这一数学模型应用的广泛性.解决这类问题关键是在不同背景下学会从所给信息中提取有效信息,建立实际问题中变量间的二次函数关系.‎ ‎【类型二】利用二次函数判断面积取值成立的条件 天添资源网 http://www.ttzyw.com/‎ 天添资源网 http://www.ttzyw.com/‎ ‎ 用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.‎ ‎(1)求y关于x的函数关系式;‎ ‎(2)当x为何值时,围成的养鸡场面积为60平方米?‎ ‎(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.‎ 解析:(1)先表示出矩形的另一边长,再利用矩形的面积公式表示出函数关系式;(2)已知矩形的面积,可以转化为解一元二次方程;(3)求出y的最大值,与70比较大小,即可作出判断.‎ 解:(1)y=x(16-x)=-x2+16x(0<x<16);‎ ‎(2)当y=60时,-x2+16x=60,解得x1=10,x2=6.所以当x=10或6时,围成的养鸡场的面积为60平方米;‎ ‎(3)方法一:当y=70时,-x2+16x=70,整理得:x2-16x+70=0,由于Δ=256-280=-24<0,因此此方程无实数根,所以不能围成面积为70平方米的养鸡场.方法二:y=-x2+16x=-(x-8)2+64,当x=8时,y有最大值64,即能围成的养鸡场的最大面积为64平方米,所以不能围成70平方米的养鸡场.‎ 方法总结:与面积有关的函数与方程问题,可通过面积公式列出函数关系式或方程.‎ ‎【类型三】最大面积方案设计 ‎ 施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图所示).‎ ‎(1)直接写出点M及抛物线顶点P的坐标;‎ ‎(2)求出这条抛物线的函数关系式;‎ ‎(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A、D点在抛物线上,B、C点在地面OM上.为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下.‎ 解:(1)M(12,0),P(6,6).‎ ‎(2)设这条抛物线的函数关系式为y=a(x-6)2+6,因为抛物线过O(0,0),所以a(0-6)2+6=0,解得,a=-,所以这条抛物线的函数关系式为:y=-(x-6)2+6,即y=-x2+2x.‎ ‎(3)设OB=m米,则点A的坐标为(m,-m2+2m),所以AB=DC=-m2+2m.根据抛物线的轴对称,可得OB=CM=m,所以BC=12-2m,即AD=12-2m,所以l=AB+AD+DC=-m2+2m+12-2m-m2+2m=-m2+2m+12=-(m-3)2+15.所以当m=3,即OB=3米时,三根木杆长度之和l的最大值为15米.‎ 天添资源网 http://www.ttzyw.com/‎ 天添资源网 http://www.ttzyw.com/‎ 三、板书设计 教学过程中,强调学生自主探索和合作交流,引导学生设计有助于学生设计表格,经历计算、观察、分析、比较的过程,直观地看出变化情况.‎ 天添资源网 http://www.ttzyw.com/‎

资料: 7.8万

进入主页

人气:

10000+的老师在这里下载备课资料