2012-2013学年高三上册数学期末试卷(附答案)
加入VIP免费下载

本文件来自资料包: 《2012-2013学年高三上册数学期末试卷(附答案)》 共有 3 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
天添资源网 http://www.ttzyw.com/‎ 高 三 数 学 ‎2013.1‎ 注意事项:‎ ‎1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分160分,考试时间120分钟.‎ ‎2.答题前,请您务必将自己的姓名、考试号用毫米黑色字迹的签字笔填写在试卷的指定位置.‎ ‎3.答题时,必须用书写黑色字迹的毫米签字笔写在试卷的指定位置,在其它位置作答一律无效.‎ ‎4.如有作图需要,可用铅笔作答,并请加黑加粗,描写清楚.‎ 一、填空题:本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上.‎ ‎1.已知集合M={1 ,2,3, 4,5},N={2,4,6,8,10},则M∩N= ▲ .‎ ‎2.已知向量,,若,则实数 ▲ .‎ ‎3.直线与 平行,则实数 ▲ . ‎ ‎4.方程有 ▲ 个不同的实数根.‎ ‎5. 已知,函数的周期比振幅小1,则 ▲ .‎ ‎6. 在△ABC中,,则= ▲ .‎ ‎7. 在等比数列中,为其前项和,已知,,则此数列的公比为 ▲ .‎ ‎8. 观察下列等式: ×=1-, ×+×=1-, ×+×+×=1-,…,由以上等式推测到一个一般的结论:对于n∈N*,‎ ×+×+…+×= ▲ .‎ ‎9. 圆心在抛物线上,并且和抛物线的准线及轴都相切的圆的标准方程 为 ▲ .‎ 天添资源网 http://www.ttzyw.com/‎ 天添资源网 http://www.ttzyw.com/‎ ‎10. 在菱形中,,,,,‎ 则 ▲ .‎ ‎11.设双曲线的左、右焦点分别为,点在双曲线的右支上,‎ 且,则此双曲线离心率的最大值为 ▲ .‎ ‎12. 从直线上一点向圆引切线,为切点,则四边形的周长最小值为 ▲ . ‎ ‎13. 每年的‎1月1日是元旦节,‎7月1日是建党节,而2013年的春节是‎2月10日,祝同学们新年梦想成真! 因为 ▲ ,新年将注定不平凡,请在括号内填写一个由月份和日期构成的正整数,使得等式成立,也正好组成我国另外一个重要节日.‎ ‎14. 已知x,y为正数,则的最大值为 ▲ .‎ 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.‎ ‎15.(本小题满分14分)‎ ‎ 已知;不等式恒成立,‎ ‎  若是的必要条件,求实数的取值范围.‎ ‎16.(本小题满分14分)‎ 已知△的面积为,且.‎ ‎(1)求的值;‎ ‎(2)若,,求△ABC的面积.‎ 天添资源网 http://www.ttzyw.com/‎ 天添资源网 http://www.ttzyw.com/‎ ‎17.(本小题满分14分)‎ ‎ 已知,函数R)图象上相异两点处的切线分别为,‎ 且∥.‎ ‎(1)判断函数的奇偶性;并判断是否关于原点对称;‎ ‎(2)若直线都与垂直,求实数的取值范围.‎ ‎18.(本小题满分16分)‎ ‎   一位幼儿园老师给班上个小朋友分糖果.她发现糖果盒中原有糖果数为,就先从别处抓2块糖加入盒中,然后把盒内糖果的分给第一个小朋友;再从别处抓2块糖加入盒中,然后把盒内糖果的分给第二个小朋友;…,以后她总是在分给一个小朋友后,就从别处抓2块糖放入盒中,然后把盒内糖果的分给第个小朋友.如果设分给第个小朋友后(未加入2块糖果前)盒内剩下的糖果数为.‎ (1) 当,时,分别求;‎ (2) 请用表示;令,求数列的通项公式;‎ ‎ (3)是否存在正整数和非负整数,使得数列成等差数列,如果存在,请求出所有的和,如果不存在,请说明理由.‎ 天添资源网 http://www.ttzyw.com/‎ 天添资源网 http://www.ttzyw.com/‎ ‎19.(本小题满分16分)‎ ‎ 已知椭圆的中心在原点,长轴在x轴上,右顶点到右焦点的距离与它到右准线的距离之比为. 不过A点的动直线交椭圆于P,Q两点.‎ (1) 求椭圆的标准方程;‎ ‎(2)证明P,Q两点的横坐标的平方和为定值;‎ ‎(3)过点 A,P,Q的动圆记为圆C,动圆C过不同于A的定点,请求出该定点坐标.‎ 20. ‎(本小题满分16分)‎ ‎ 已知函数,对一切正整数,数列定义如下:,‎ 且,前项和为.‎ ‎(1)求函数的单调区间,并求值域;‎ ‎(2)证明;‎ ‎(3)对一切正整数,证明: ;.‎ 天添资源网 http://www.ttzyw.com/‎

10000+的老师在这里下载备课资料