第2章 章末检测(A)
(时间:120分钟 满分:160分)
一、填空题(本大题共14小题,每小题5分,共70分)
1.若a0时,函数的解析式为f(x)=-1.
(1)用定义证明f(x)在(0,+∞)上是减函数;
(2)求当x0且a≠1),
(1)求f(x)的定义域;
(2)判断函数的奇偶性和单调性.
18.(16分)已知函数f(x)对一切实数x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)1>b>0,若f(x)=lg(ax-bx).
(1)求y=f(x)的定义域;
(2)证明y=f(x)在定义域内是增函数;
(3)若f(x)恰在(1,+∞)内取正值,且f(2)=lg 2,求a、b的值.
第2章 章末检测(A)
1.
解析 ∵a1>b>0,
∴ax1>ax2>1,0ax2-bx2>0.
又∵y=lg x在(0,+∞)上是增函数,
∴lg(ax1-bx1)>lg(ax2-bx2),即f(x1)>f(x2).
∴f(x)在定义域内是增函数.
(3)解 由(2)得,f(x)在定义域内为增函数,
又恰在(1,+∞)内取正值,
∴f(1)=0.又f(2)=lg 2,
∴∴解得