浙江省2015年中考数学试题(附答案)
加入VIP免费下载

本文件来自资料包: 《浙江省2015年中考数学试题(附答案)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
浙江省2015年中考数学试题(附答案)‎ 满分150分,考试时间120分钟 一、选择题(本题有10小题,每小题4分,共40分)‎ ‎1. 计算的结果是 A. -3 B. -2 C. 2 D. 3‎ ‎2. 据中国电子商务研究中心监测数据显示,2015年第一季度中国轻纺城市场群的商品成交额达27 800 000 000元,将27 800 000 000用科学计数法表示为 A. 2.78×1010 B. 2.78×1011 C. 27.8×1010 D. 0.278×1011‎ ‎3. 有6个相同的立方体搭成的几何体如图所示,则它的主视图是 ‎4. 下面是一位同学做的四道题:①;②;③;④,其中做对的一道题的序号是 A. ① B. ② C. ③ D. ④‎ ‎5. 在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是 A. B. C. D. ‎ ‎6. 化简的结果是 A. B. C. D. ‎ ‎7. 如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线。此角平分仪的画图原理是:根据仪器结构,可得 ‎△ABC≌△ADC,这样就有∠QAE=∠PAE。则说明这两个三角形全等的依据是 A. SAS B. ASA C. AAS D. SSS 10‎ ‎8. 如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长 A. B. C. D. ‎ ‎9. 如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换。已知抛物线经过两次简单变换后的一条抛物线是,则原抛物线的解析式不可能的是 A. B. ‎ C. D. ‎ ‎10. 挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走。如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走 A. ②号棒 B. ⑦号棒 C. ⑧号棒 D. ⑩号棒 二、填空题(本题有6小题,每小题5分,共30分)‎ ‎11. 因式分解:= ▲ ‎ ‎12. 如图,已知点A(0,1),B(0,-1),以点A为圆心,AB为半径作圆,交轴的正半轴于点C,则∠BAC等于 ▲ 度 ‎13. 由于木质衣架没有柔性,在挂置衣服的时候不太方便操作。小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可。如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是 ▲ cm ‎14. 在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB。若PB=4,则PA的长为 ▲ ‎ 10‎ ‎15. 在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(,)。如图,若曲线与此正方形的边有交点,则的取值范围是 ‎ ▲ ‎ ‎16. 实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示。若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入 ▲ 分钟的水量后,甲与乙的水位高度之差是0.5cm 三、解答题(本题有8小题,共80分)‎ ‎17.(本题8分)‎ ‎(1)计算:;‎ ‎(2)解不等式:≤‎ ‎18.(本题8分)‎ 小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中。小敏离家的路程(米)和所经过的时间(分)之间的函数图象如图所示。请根据图象回答下列问题:‎ ‎(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?‎ ‎(2)小敏几点几分返回到家?‎ 10‎ ‎19.(本题8分)‎ 为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图。‎ 根据以上信息,解答下列问题:‎ ‎(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;‎ ‎(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?‎ ‎20.(本题8分)‎ 如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°。‎ ‎(1)求∠BPQ的度数;‎ ‎(2)求该电线杆PQ的高度(结果精确到1m)。‎ 备用数据:,‎ 10‎ ‎21.(本题10分)‎ 如果抛物线过定点M(1,1),则称次抛物线为定点抛物线。‎ ‎(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式。小敏写出了一个答案:,请你写出一个不同于小敏的答案;‎ ‎(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线,求该抛物线顶点纵坐标的值最小时的解析式,请你解答。‎ ‎22.(本题12分)‎ 某校规划在一块长AD为18m,宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮。‎ ‎(1)如图1,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM:AN=8:9,问通道的宽是多少?‎ ‎(2)为了建造花坛,要修改(1)中的方案,如图2,将三条通道改为两条通道,纵向的宽度改为横向宽度的2倍,其余四块草坪相同,且每一块草坪均有一边长为8m,这样能在这些草坪建造花坛。如图3,在草坪RPCQ中,已知RE⊥PQ于点E,CF⊥PQ于点F,求花坛RECF的面积。‎ 10‎ ‎23.(本题12分)‎ 正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图。‎ ‎(1)若α=0°,则DF=BF,请加以证明;‎ ‎(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;‎ ‎(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由。‎ ‎24.(本题14分)‎ 在平面直角坐标系中,O为原点,四边形OABC的顶点A在轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点。‎ ‎(1)若四边形PABC为矩形,如图1,‎ ‎①求点B的坐标;‎ ‎②若BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;‎ ‎(2)若四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥轴,与对角线AC、边OC分别交于点E、点F。若B1E: B1F=1:3,点B1的横坐标为,求点B1的纵坐标,并直接写出的取值范围。‎ 10‎ 10‎ 10‎ 10‎ 10‎

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料