由莲山课件提供http://www.5ykj.com/ 资源全部免费
中档大题规范练4 概率与统计
1.(2016·北京)A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):
A班
6
6.5
7
7.5
8
B班
6
7
8
9
10
11
12
C班
3
4.5
6
7.5
9
10.5
12
13.5
(1)试估计C班的学生人数;
(2)从A班和C班抽出的学生中,各随机选取1人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;
(3)再从A,B,C三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小(结论不要求证明).
解 (1)C班学生人数约为100×=100×=40.
(2)设事件Ai为“甲是现有样本中A班的第i个人”,i=1,2,…,5,
事件Cj为“乙是现有样本中C班的第j个人”,j=1,2,…,8.
由题意可知P(Ai)=,i=1,2,…,5;P(Cj)=,j=1,2,…,8.
P(AiCj)=P(Ai)P(Cj)=×=,i=1,2,…,5,j=1,2,…,8.
设事件E为“该周甲的锻炼时间比乙的锻炼时间长”,由题意知,
E=A1C1∪A1C2∪A2C1∪A2C2∪A2C3∪A3C1∪A3C2∪A3C3∪A4C1∪A4C2∪A4C3∪A5C1∪A5C2 ∪A5C3∪A5C4.
因此P(E)=P(A1C1)+P(A1C2)+P(A2C1)+P(A2C2)+P(A2C3)+P(A3C1)+P(A3C2)+P(A3C3)+P(A4C1)+P(A4C2)+P(A4C3)+P(A5C1)+P(A5C2)+P(A5C3)+P(A5C4)=15×=.
(3)μ1<μ0.
2.某学校为准备参加市运动会,对本校甲、乙两个田径队中30名跳高运动员进行了测试,并用茎叶图表示出本次测试30人的跳高成绩(单位:cm).跳高成绩在175 cm以上(包括175 cm)定义为“合格”,成绩在175 cm以下定义为“不合格”.鉴于乙队组队晚,跳高成绩相对较弱,为激励乙队队员,学校决定只有乙队中“合格”者才能参加市运动会开幕式旗林队.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(1)求甲队队员跳高成绩的中位数;
(2)如果将所有的运动员按“合格”与“不合格”分成两个层次,用分层抽样抽取“合格”与“不合格”的人数共5人,则各层应抽取多少人?
(3)若从所有“合格”运动员中选取2名,用X表示所选运动员中甲队能参加市运动会开幕式旗林队的人数,试写出X的分布列,并求X的均值.
解 (1)由茎叶图知,甲田径队12名队员的跳高成绩从小到大排列后中间的两个成绩为176、178,
故中位数为(176+178)=177.
(2)由茎叶图可知,甲、乙两队合格人数为12,不合格人数为18,所以抽取五人,合格人数为×12=2,不合格人数为×18=3.
(3)X=0,1,2,P(X=0)==,
P(X=1)==,P(X=2)==.
故X的分布列为
X
0
1
2
P
E(X)=0×+1×+2×=.
3.安排5个大学生到A,B,C三所学校支教,设每个大学生去任何一所学校是等可能的.
(1)求5个大学生中恰有2个人去A校支教的概率;
(2)设有大学生去支教的学校的个数为ξ,求ξ的分布列.
解 (1)5个大学生到三所学校支教的所有可能为35=243(种),设“恰有2个人去A校支教”为事件M,
则有C·23=80(种),∴P(M)=.
即5个大学生中恰有2个人去A校支教的概率为.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)由题意得:ξ=1,2,3, ξ=1⇒5人去同一所学校,
有C=3(种),∴P(ξ=1)==,ξ=2⇒5人去两所学校,即分为4,1或3,2有C·(C+C)·A=90(种),
∴P(ξ=2)===,ξ=3⇒5人去三所学校,即分为3,1,1或2,2,1有(+)·A=150(种),∴P(ξ=3)==.
∴ξ 的分布列为
ξ
1
2
3
P
4.甲、乙两人进行定点投篮比赛,在距篮筐3米线内设一点A,在点A处投中一球得2分,不中得0分;在距篮筐3米线外设一点B,在点B处投中一球得3分,不中得0分,已知甲、乙两人在A点投中的概率都是,在B点投中的概率都是,且在A,B两点处投中与否相互独立,设定甲、乙两人先在A处各投篮一次,然后在B处各投篮一次,总得分高者获胜.
(1)求甲投篮总得分ξ的分布列和均值;
(2)求甲获胜的概率.
解 (1)设“甲在A点投中”为事件A,“甲在B点投中”为事件B,根据题意,ξ的可能取值为0,2,3,5,则
P(ξ=0)=P( )=(1-)×(1-)=,
P(ξ=2)=P(A)=×(1-)=,
P(ξ=3)=P(B)=(1-)×=,
P(ξ=5)=P(AB)=×=.
所以ξ的分布列为
ξ
0
2
3
5
P
E(ξ)=0×+2×+3×+5×=2.
(2)同理,乙的总得分η的分布列为
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
ξ
0
2
3
5
P
甲获胜包括:甲得2分、3分、5分三种情形,这三种情形之间彼此互斥.因此,所求事件的概率为
P=P(ξ=2)×P(η=0)+P(ξ=3)×P(η