九年级数学下第二章二次函数质量检测试题(北师大版)
加入VIP免费下载

本文件来自资料包: 《九年级数学下第二章二次函数质量检测试题(北师大版)》 共有 2 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 北师大版九年级数学下册第二章质量检测试题 学校:___________姓名:___________班级:___________考号:___________‎ 评卷人 得分 一、选择题 ‎1.二次函数y=-x2+2x+2化为y=a(x-h)2+k的形式,下列正确的是( )‎ A. y=-(x-1)2+2 B. y=-(x-1)2+‎3 C. y=(x-2)2+2 D. y=(x-2)2+4‎ ‎2.抛物线y=(x-2)2+5的顶点坐标是( )‎ A. (-2,5) B. (2,5) C. (-2,-5) D. (2,-5)‎ ‎3.把抛物线y=-x2向左平移1个单位长度,然后向上平移3个单位长度,则平移后抛物线的解析式为( )‎ A.y=-(x-1)²-3 B.y=-(x+1)²-‎3 C.y=-(x-1)²+3 D.y=-(x+1)²+3‎ ‎4.小明从图所示的二次函数的图象中,观察得出了下面四条信息:①;②<0;③;④方程必有一个根在-1到0之间.你认为其中正确信息的个数有( )‎ A.1个 B.2个 C.3个 D.4个 ‎5.已知二次函数的图象(﹣0.7≤x≤2)如图所示、关于该函数在所给自变量x的取值范围内,下列说法正确的是( )‎ A. 有最小值1,有最大值2 B. 有最小值-1,有最大值1‎ C. 有最小值-1,有最大值2 D. 有最小值-1,无最大值 x ‎…‎ ‎﹣5‎ ‎﹣4‎ ‎﹣3‎ ‎﹣2‎ ‎﹣1‎ ‎0‎ ‎…‎ y ‎…‎ ‎4‎ ‎0‎ ‎﹣2‎ ‎﹣2‎ ‎0‎ ‎4‎ ‎…‎ ‎6.二次函数,自变量x与函数y的对应值如下表:‎ 则下列说法正确的是( )‎ A. 抛物线的开口向下 B. 当x>时,y随x的增大而增大 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 C. 二次函数的最小值是 D. 抛物线的对称轴是x= ‎ ‎7.二次函数y=ax2+bx+c的图象如图所示,反比例函数与正比例函数y=bx在同一坐标系内的大致图象是( )‎ A. B. C. D.‎ ‎8.如图,正方形ABCD的边长为‎3cm,动点P从B点出发以‎3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以‎1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( ) ‎ ‎9.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为( )‎ A.﹣3 B.‎3 C.﹣6 D.9‎ ‎10.已知二次函数y=kx2﹣5x﹣5的图象与x轴有交点,则k的取值范围是( )‎ A.k>- B.k-且k≠‎0 C.k- D.k>-且k≠0‎ 评卷人 得分 二、填空题 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎11.已知抛物线y=x2﹣(k+1)x+4的顶点在x轴上,则k的值是 .‎ ‎12.如图,抛物线y=ax2+bx+c与x轴的一个交点是A(1,0),对称轴为直线x=﹣1,则一元二次方程ax2+bx+c=0的解是 .‎ ‎13.利用图象法求方程的解,体现了数形结合的方法,它是将方程的解看成两个函数图象交点的横坐标.若关于x的方程x2+a﹣=0(a>0)只有一个整数解,则a的值等于 .‎ ‎14.已知抛物线p:y=+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=+2x+1和y=2x+2,则这条抛物线的解析式为 .‎ 评卷人 得分 三、解答题 ‎15.已知:关于x的方程:mx2﹣(‎3m﹣1)x+‎2m﹣2=0.‎ ‎(1)求证:无论m取何值时,方程恒有实数根;‎ ‎(2)若关于x的二次函数y=mx2﹣(‎3m﹣1)x+‎2m﹣2的图象与x轴两交点间的距离为2时,求抛物线的解析式.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎16.如图,抛物线y=ax2+bx+c经过A(﹣4,0)、B(1,0)、C(0,3)三点,直线y=mx+n经过A(﹣4,0)、C(0,3)两点.‎ ‎(1)写出方程ax2+bx+c=0的解;‎ ‎(2)若ax2+bx+c>mx+n,写出x的取值范围.‎ ‎17.已知抛物线y=x2﹣2x﹣8.‎ ‎(1)用配方法把y=x2﹣2x﹣8化为y=(x﹣h)2+k形式;‎ ‎(2)并指出:抛物线的顶点坐标是 ,抛物线的对称轴方程是 ,抛物线与x轴交点坐标是 ,当x 时,y随x的增大而增大.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎18.在平面直角坐标系xOy中,抛物线y=﹣x2+2mx﹣m2+1的对称轴是直线x=1.‎ ‎(1)求抛物线的表达式;‎ ‎(2)点D(n,y1),E(3,y2)在抛物线上,若y1<y2,请直接写出n的取值范围;‎ ‎(3)设点M(p,q)为抛物线上的一个动点,当﹣1<p<2时,点M关于y轴的对称点都在直线y=kx﹣4的上方,求k的取值范围.‎ ‎19.根据下列要求,解答相关问题.‎ ‎(1)请补全以下求不等式﹣2x2﹣4x>0的解集的过程.‎ ‎①构造函数,画出图象:根据不等式特征构造二次函数y=﹣2x2﹣4x;并在下面的坐标系中(图1)画出二次函数y=﹣2x2﹣4x的图象(只画出图象即可).‎ ‎②求得界点,标示所需,当y=0时,求得方程﹣2x2﹣4x=0的解为 ;并用锯齿线标示出函数y=﹣2x2﹣4x图象中y>0的部分.‎ ‎③借助图象,写出解集:由所标示图象,可得不等式﹣2x2﹣4x>0的解集为﹣2<x<‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎0.请你利用上面求一元一次不等式解集的过程,求不等式x2﹣2x+1≥4的解集.‎ ‎20.若两个二次函数图象的顶点,开口方向都相同,则称这两个二次函数为“同簇二次函数”.‎ ‎(1)请写出两个为“同簇二次函数”的函数;‎ ‎(2)已知关于x的二次函数y1=2x2﹣4mx+‎2m2‎+1,和y2=x2+bx+c,其中y1的图象经过点A(1,1),若y1+y2为y1为“同簇二次函数”,求函数y2的表达式,并求当0≤x≤3时,y2的取值范围.‎ ‎21.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:‎ 时间x(天)‎ ‎1≤x<50‎ ‎50≤x≤90‎ 售价(元/件)‎ x+40‎ ‎90‎ 每天销量(件)‎ ‎200﹣2x 已知该商品的进价为每件30元,设销售该商品的每天利润为y元.‎ ‎(1)求出y与x的函数关系式;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?‎ ‎(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.‎ ‎22.如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点.‎ ‎(1)求此抛物线的解析式;‎ ‎(2)求C、D两点坐标及△BCD的面积;‎ ‎(3)若点P在x轴上方的抛物线上,满足S△PCD=S△BCD,求点P的坐标.‎ ‎23.如图1,在△ABC中,∠‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 A=120°,AB=AC,点P、Q同时从点B出发,以相同的速度分别沿折线B→A→C、射线BC运动,连接PQ.当点P到达点C时,点P、Q同时停止运动.设BQ=x,△BPQ与△ABC重叠部分的面积为S.如图2是S关于x的函数图象(其中0≤x≤8,8<x≤m,m<x≤16时,函数的解析式不同).‎ ‎(1)填空:m的值为 ;‎ ‎(2)求S关于x的函数关系式,并写出x的取值范围;‎ ‎(3)请直接写出△PCQ为等腰三角形时x的值.‎ ‎24.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点左侧,B点的坐标为(4,0),与y轴交于C(0,﹣4)点,点P是直线BC下方的抛物线上一动点.‎ ‎(1)求这个二次函数的表达式.‎ ‎(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.‎ ‎(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 参考答案 ‎1.B ‎2.B ‎3.D ‎4.C ‎5.C ‎6.D ‎7.B ‎8.A ‎9.B.‎ ‎10.B ‎11.3或﹣5.‎ ‎12.x1=1,x2=﹣3.‎ ‎13.3.‎ ‎14.y=﹣2x﹣3.‎ ‎15.解:(1)、①当m=0时,原方程可化为x﹣2=0,解得x=2;②当m≠0时,方程为一元二次方程,‎ ‎△=[﹣(‎3m﹣1)]2﹣‎4m(‎2m﹣2) =m2+‎2m+1 =(m+1)2≥0,故方程有两个实数根;‎ 故无论m为何值,方程恒有实数根.‎ ‎(2)、∵二次函数y=mx2﹣(‎3m﹣1)x+‎2m﹣2的图象与x轴两交点间的距离为2,‎ ‎∴=2, 整理得,‎3m2‎﹣‎2m﹣1=0, 解得m1=1,m2=﹣.‎ 则函数解析式为y=x2﹣2x或y=﹣x2+2x﹣.‎ ‎16.解:(1)、根据一元二次方程的解就是抛物线与x轴的交点的横坐标解答即可;(2)、确定出抛物线在直线上方部分的x的取值即可.‎ 试题解析:(1)、∵抛物线y=ax2+bx+c经过A(﹣4,0)、B(1,0),∴方程ax2+bx+c=0的解为x1=﹣4,x2=1;‎ ‎(2)、由图可知,ax2+bx+c>mx+n时,﹣4<x<0.‎ ‎17.解:(1)、y=x2﹣2x﹣8=x2﹣2x+1﹣1﹣8 =(x﹣1)2﹣9.‎ ‎(2)、由(1)知,抛物线的解析式为:y=(x﹣1)2﹣9, ∴抛物线的顶点坐标是(1,﹣9)‎ 答案第8页,总8页 抛物线的对称轴方程是x=1 当y=0时, (x﹣1)2﹣9=0, 解得x=﹣2或x=4,‎ ‎∴抛物线与x轴交点坐标是(﹣2,0),(4,0); ∵该抛物线的开口向上,对称轴方程是x=1,‎ ‎∴当x>1时,y随x的增大而增大. ‎ ‎18.解:(1)∵抛物线的对称轴为x=1,∴x=﹣=1.‎ 解得:m=1.∴抛物线的解析式为y=﹣x2+2x.‎ ‎(2)将x=3代入抛物线的解析式得y=﹣32+2×3=﹣3.‎ 将y=﹣3代入得:﹣x2+2x=﹣3.解得:x1=﹣1,x2=3.‎ ‎∵a=﹣1<0,∴当n<﹣1或n>3时,y1<y2.‎ ‎(3)设点M关于y轴对称点为M′,则点M′运动的轨迹如图所示:‎ ‎∵当P=﹣1时,q=﹣(﹣1)2+2×(﹣1)=﹣3.∴点M关于y轴的对称点M1′的坐标为(1,﹣3).‎ ‎∵当P=2时,q=﹣22+2×2=0,∴点M关于y轴的对称点M2′的坐标为(﹣2,0).‎ ‎①当k<0时,∵点M关于y轴的对称点都在直线y=kx﹣4的上方,∴﹣2k﹣4≤0.‎ 解得:k≥﹣2.‎ ‎②当k>0时,∵点M关于y轴的对称点都在直线y=kx﹣4的上方,‎ ‎∴k﹣4≤﹣3.解得;k≤1.‎ ‎∴k的取值范围是﹣2≤k≤1.‎ ‎19.解:①图所示:‎ 答案第8页,总8页 ‎;‎ ‎②方程﹣2x2﹣4x=0即﹣2x(x+2)=0,‎ 解得:x1=0,x2=﹣2;‎ 则方程的解是x1=0,x2=﹣2,‎ 图象如图1;‎ ‎③函数y=x2﹣2x+1的图象是:‎ 当y=4时,x2﹣2x+1=4,解得:x1=3,x2=﹣1.‎ 则不等式的解集是:x≥3或x≤﹣1.‎ ‎20.解:(1)、设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k, 当a=2,h=3,k=4时,‎ 二次函数的关系式为y=2(x﹣3)2+4. ∵2>0, ∴该二次函数图象的开口向上.‎ 当a=3,h=3,k=4时, 二次函数的关系式为y=3(x﹣3)2+4. ∵3>0,∴该二次函数图象的开口向上.‎ ‎∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,‎ ‎∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.‎ ‎∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.‎ 答案第8页,总8页 ‎(2)、∵y1的图象经过点A(1,1), ∴2×12﹣4×m×1+‎2m2‎+1=1. 整理得:m2﹣‎2m+1=0. 解得:m1=m2=1.‎ ‎∴y1=2x2﹣4x+3=2(x﹣1)2+1, ∴y1+y2=2x2﹣4x+3+x2+bx+c=3x2+(b﹣4)x+(c+3),‎ ‎∵y1+y2与y1为“同簇二次函数”, ∴y1+y2=3(x﹣1)2+1=3x2﹣6x+4, ∴函数y2的表达式为:y2=x2﹣2x+1.‎ ‎∴y2=x2﹣2x+1=(x﹣1)2, ∴函数y2的图象的对称轴为x=1. ∵1>0,‎ ‎∴函数y2的图象开口向上. 当0≤x≤3时,∵函数y2的图象开口向上, ∴y2的取值范围为0≤y2≤4.‎ ‎21.解:(1)、当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000, ‎ 当50≤x≤90时,‎ y=(200﹣2x)(90﹣30)=﹣120x+12000, ‎ 综上所述:y=;‎ ‎(2)、当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45, ‎ 当x=45时,y最大=﹣2×452+180×45+2000=6050, ‎ 当50≤x≤90时,y随x的增大而减小, ‎ 当x=50时,y最大=6000,‎ 综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;‎ ‎(3)、当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70, ‎ 因此利润不低于4800元的天数是20≤x<50,共30天; 当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60, ‎ 因此利润不低于4800元的天数是50≤x≤60,共11天, ‎ 所以该商品在销售过程中,共41天每天销售利润不低于4800元.‎ ‎22.解:(1)、∵抛物线的顶点为A(1,4), ∴设抛物线的解析式y=a(x﹣1)2+4,‎ 把点B(0,3)代入得,a+4=3, 解得a=﹣1, ∴抛物线的解析式为y=﹣(x﹣1)2+4;‎ ‎(2)由(1)知,抛物线的解析式为y=﹣(x﹣1)2+4; 令y=0,则0=﹣(x﹣1)2+4,‎ ‎∴x=﹣1或x=3, ∴C(﹣1,0),D(3,0); ∴CD=4,∴S△BCD=CD×|yB|=×4×3=6;‎ 答案第8页,总8页 ‎(3)由(2)知,S△BCD=CD×|yB|=×4×3=6;CD=4, ∵S△PCD=S△BCD,‎ ‎∴S△PCD=CD×|yP|=×4×|yP|=3, ∴|yP|=, ∵点P在x轴上方的抛物线上,‎ ‎∴yP>0, ∴yP=, ∵抛物线的解析式为y=﹣(x﹣1)2+4; ∴=﹣(x﹣1)2+4,‎ ‎∴x=1±, ∴P(1+,),或P(1﹣,).‎ 考点:二次函数综合题.‎ ‎23.解:(1)如图1中,作AM⊥BC,PN⊥BC,垂足分别为M,N.‎ 由题意AB=AC=8,∠A=120°,‎ ‎∴∠BAM=∠CAM=60°,∠B=∠C=30°,‎ ‎∴AM=AB=4,BM=CM=,‎ ‎∴BC=,‎ ‎∴m=BC=,‎ 故答案为:.‎ ‎(2)①当0≤m≤8时,如图1中,‎ 在RT△PBN中,∵∠PNB=90°,∠B=30°,PB=x,‎ ‎∴PN=x.‎ s=•BQ•PN=•x••x=.‎ ‎②当<x≤16时,如图2中,‎ 在RT△PBN中,∵PC=16﹣x,∠PNC=90°,∠C=30°,‎ ‎∴PN=PC=8﹣x,‎ ‎∴s=•BQ•PN=•x•(8﹣x)=+4x.‎ ‎③当<x≤16时,‎ 答案第8页,总8页 s=ו(8﹣x)=,‎ 综上,当0≤m≤8时,s =;当<x≤16时,s=+4x;当<x≤16时,s=.‎ ‎(3)①当点P在AB上,点Q在BC上时,△PQC不可能是等腰三角形.‎ ‎②当点P在AC上,点Q在BC上时,PQ=QC,‎ ‎∵PC=QC,‎ ‎∴16﹣x=(﹣x),‎ ‎∴x=+4.‎ ‎③当点P在AC上,点Q在BC的延长线时,PC=CQ,‎ 即16﹣x=x﹣,‎ ‎∴x=8+.‎ ‎∴△PCQ为等腰三角形时x的值为+4或8+.‎ 考点:动点问题的函数图象.‎ ‎24.(1)二次函数的表达式为:y=x2﹣3x﹣4;‎ ‎(2)存在,P点的坐标为(,﹣2);‎ ‎(3)此时P点的坐标为:(2,﹣6),四边形ABPC的面积的最大值为18.‎ 解:(1)将B、C的坐标代入抛物线的解析式中即可求得待定系数的值;‎ ‎(2)由于菱形的对角线互相垂直平分,若四边形POP′C为菱形,那么P点必在OC的垂直平分线上,据此可求出P点的纵坐标,代入抛物线的解析式中即可求出P点的坐标;‎ ‎(3)由于△ABC的面积为定值,当四边形ABPC的面积最大时,△‎ 答案第8页,总8页 BPC的面积最大;过P作y轴的平行线,交直线BC于Q,交x轴于F,易求得直线BC的解析式,可设出P点的横坐标,然后根据抛物线和直线BC的解析式求出Q、P的纵坐标,即可得到PQ的长,以PQ为底,B点横坐标的绝对值为高即可求得△BPC的面积,由此可得到关于四边形ACPB的面积与P点横坐标的函数关系式,根据函数的性质即可求出四边形ABPC的最大面积及对应的P点坐标.‎ 试题解析:(1)将B、C两点的坐标代入得:‎ ‎,‎ 解得:;‎ 所以二次函数的表达式为:y=x2﹣3x﹣4;‎ ‎(2)存在点P,使四边形POP′C为菱形;‎ 设P点坐标为(x,x2﹣3x﹣4),PP′交CO于E 若四边形POP′C是菱形,则有PC=PO;‎ 如图1,连接PP′,则PE⊥CO于E,‎ ‎∵C(0,﹣4),‎ ‎∴CO=4,‎ 又∵OE=EC,‎ ‎∴OE=EC=2‎ ‎∴y=﹣2;‎ ‎∴x2﹣3x﹣4=﹣2‎ 解得:x1=,x2=(不合题意,舍去),‎ ‎∴P点的坐标为(,﹣2);‎ ‎(3)如图2,过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P(x,x2﹣3x﹣4),设直线BC的解析式为:y=kx+d,‎ 则,‎ 解得:,‎ ‎∴直线BC的解析式为:y=x﹣4,‎ 答案第8页,总8页 则Q点的坐标为(x,x﹣4);‎ 当0=x2﹣3x﹣4,‎ 解得:x1=﹣1,x2=4,‎ ‎∴AO=1,AB=5,‎ S四边形ABPC=S△ABC+S△BPQ+S△CPQ ‎=ABOC+QPBF+QPOF ‎=×5×4+(4﹣x)[x﹣4﹣(x2﹣3x﹣4)]+ x[x﹣4﹣(x2﹣3x﹣4)]‎ ‎=﹣2x2+8x+10‎ ‎=﹣2(x﹣2)2+18‎ 当x=2时,四边形ABPC的面积最大,‎ 此时P点的坐标为:(2,﹣6),四边形ABPC的面积的最大值为18.‎ 答案第8页,总8页

资料: 7.8万

进入主页

人气:

10000+的老师在这里下载备课资料