2017年中考数学总复习方程与不等式单元试卷2(含答案)
加入VIP免费下载

本文件来自资料包: 《2017年中考数学总复习方程与不等式单元试卷2(含答案)》 共有 2 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 单元测试(二) 方程与不等式 ‎(时间:45分钟 满分:100分)‎ 一、选择题(每小题4分,共32分)‎ ‎1.方程3x+2(1-x)=4的解是( C )‎ A.x= B.x= C.x=2 D.x=1‎ ‎2.二元一次方程组的解是( A )‎ A. B. C. D. ‎3.一元一次不等式2(x+2)≥6的解在数轴上表示为( A )‎ ‎4.下列方程有两个相等的实数根的是( C )‎ A.x2+x+1=0 B.4x2+x+1=0‎ C.x2+12x+36=0 D.x2+x-2=0‎ ‎5.已知等腰三角形的腰和底的长分别是一元二次方程x2-4x+3=0的根,则该三角形的周长可以是( B )‎ A.5 B.7 C.5或7 D.10‎ ‎6.若关于x的一元一次不等式组有解,则m的取值范围为( C )‎ A.m>- B.m≤ C.m> D.m≤- ‎7.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A型陶笛比B型陶笛的单价低20元,用2 700元购买A型陶笛与用4 500元购买B型陶笛的数量相同,设A型陶笛的单价为x元,依题意,下面所列方程正确的是( D )‎ A.= B.= C.= D.= ‎8.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60 m,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加1 600时.设扩大后的正方形绿地边长为x m,下面所列方程正确的是( A )‎ A.x(x-60)=1 600 B.x(x+60)=1 600‎ C.60(x+60)=1 600 D.60(x-60)=1 600‎ 二、填空题(每小题3分,共18分)‎ ‎9.满足不等式2(x+1)>1-x的最小整数解是0.‎ ‎10.若方程x2-2x-1=0的两根分别为x1,x2,则x1+x2-x1x2的值为3.‎ ‎11.分式方程=的解是x=2.‎ ‎12.一元二次方程2x2-3x+k=0有两个不相等的实数根,则k的取值范围是k<.‎ ‎13.某公司成立3年以来,积极向国家上缴利税,由第一年的200万元增长到800万元,则平均每年增长的百分数是100%.‎ ‎14.如果实数x,y满足方程组那么x2-y2的值为-.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 三、解答题(共50分)‎ ‎15.(6分)解方程组: 解:由①,得y=3-2x.③‎ 把③代入②,得3x-5(3-2x)=11.解得x=2.‎ 将x=2代入③,得y=-1.‎ ‎∴原方程组的解为 ‎16.(6分)解方程:=-2.‎ 解:方程两边同乘(x-3),得 ‎1=x-1-2(x-3).‎ 解得x=4.‎ 检验:当x=4时,x-3≠0,‎ ‎∴x=4是原分式方程的解.‎ ‎17.(8分)解不等式组并把解在数轴上表示出来.‎ 解:由1+x>-2,得x>-3.‎ 由≤1,得x≤2.‎ ‎∴不等式组的解集为-3<x≤2.‎ 解集在数轴上表示如下:‎ ‎18.(8分)先化简,再求值:(+2-x)÷,其中x满足x2-4x+3=0.‎ 解:原式=÷ ‎=· 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎=-.‎ 解方程x2-4x+3=0,得(x-1)(x-3)=0,‎ ‎∴x1=1,x2=3.‎ 当x=1时,原分式无意义;‎ 当x=3时,原式=-=-.‎ ‎19.(10分)2016年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷所用车辆与乙种货车装运800件帐篷所用车辆相等.‎ ‎(1)求甲、乙两种货车每辆车可装多少件帐篷;‎ ‎(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其他装满,求甲、乙两种货车各有多少辆?‎ 解:(1)设乙种货车每辆车可装x件帐篷,由题意,得 =.解得x=80.‎ 经检验,x=80是原方程的解,且符合实际情况.‎ 答:甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷.‎ ‎(2)设甲、乙两种货车分别有a辆、b辆,由题意,得解得 答:甲、乙两种货车分别有12辆,4辆.‎ ‎20.(12分)某物流公司承接A、B两种货物的运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收运费9 500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨.该物流公司6月份承接的A种货物和B种货物数量与5月份相同,6月份共收取运费13 000元.问:‎ ‎(1)该物流公司5月份运输两种货物各多少吨?‎ ‎(2)该物流公司预计7月份运输这两种货物共330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收取多少运输费?‎ 解:(1)设该物流公司5月份运输A、B两种货物各x吨、y吨,依题意,得 解得 答:该物流公司5月份运输A种货物100吨,运输B种货物150吨.‎ ‎(2)设物流公司7月份运输A种货物a吨,收取w元运输费,则依题意,有 a≤2(330-a).则a≤220.∴a最大为220.‎ w=70a+40(330-a)=30a+13 200.‎ ‎∵k=30>0,w随a的增大而增大.‎ ‎∴当a=220时,w最大=30×220+13 200=19 800(元).‎ 答:该物流公司7月份最多将收取运输费19 800元.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费

资料: 7.8万

进入主页

人气:

10000+的老师在这里下载备课资料