2017年贵州省黔东南州中考数学试卷
加入VIP免费下载

本文件来自资料包: 《2017年贵州省黔东南州中考数学试卷》 共有 2 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供 http://www.5ykj.com/ 资源全部免费 由莲山课件提供 http://www.5ykj.com/ 资源全部免费 贵州省黔东南州 2017年中考数学试题(word版) 一、选择题:本大题共 10 个小题,每小题 4 分,共 40 分.在每小题给出的四个选 项中,只有一项是符合题目要求的.[来源:中国教^*&育@%出版网] 1. 2 的值是 ( ) A. 2 B.2 C. 1 2  D. 1 2 2.如图, 120 20ACD B    , ,则 A 的度数是 ( ) A.120 B.90 C.100 D.30 3.下列运算结果正确的是 ( ) A.3 2a a  B.  2 2 2a b a b   C.  26 2 3ab ab b    D.   2a a b a b   4.如图所示,所给的三视图表示的几何体是 ( ) A.圆锥 B.正三棱锥 C.正四棱锥 D.正三棱柱 5. 如图, O 的直径 AB 垂直于弦CD,垂足为 15E A  , ,半径为 2 ,则弦CD的 长为 ( ) A.2 B. 1 C. 2 D. 4 由莲山课件提供 http://www.5ykj.com/ 资源全部免费 由莲山课件提供 http://www.5ykj.com/ 资源全部免费 6.已知一元二次方程 2 2 1 0x x   的两根分别为 1 2,x x ,则 1 2 1 1 x x  的值为 ( ) A.2 B. 1 C. 1 2  D. 2 7. 方式方程   3 31 1 1x x x     的根为( ) A. 1 或3 B. 1 C. 3 D.1 或 3 8. 如图,正方形 ABCD中,E为 AB中点, , 2 ,FE AB AF AE FC  交 BD于O,则 DOC 的度数为 ( )[来源:中#国教育~出版&*网^] A.60 B.67.5 C.75 D.54 9.如图,抛物线  2 0y ax bx c a    的对称轴为直线 1x   ,给出下列结论:① 2 4b ac ; ② 0abc  ;③a c ;④ 4 2 0a b c   ,其中正确的个数有 ( ) [中#@%国教~育出版&网] A.1个 B. 2个 C.3个 D. 4个 10.我国古代数学的许多创新和发展都位居世界前列,如南宋数宁家杨辉(约 13 世纪)所著的 《详解九章算术》 —书中,用下图的三角形解释二项和  na b 的展开式的各項系数,此 三角形称为“杨辉三角”.  0a b …………… ①  1a b ……………① ① 由莲山课件提供 http://www.5ykj.com/ 资源全部免费 由莲山课件提供 http://www.5ykj.com/ 资源全部免费  2a b …………① ② ①  3a b ………① ③ ③ ①  4a b ……① ④ ⑥ ④ ①  5a b …① ⑤ ⑩ ⑩ ⑤ ① …… …… 根据“杨辉三角”请计算  20a b 的展开式中第三项的系数为( ) A.2017 B. 2016 C. 191 D.190 二、填空题(每题 4分,满分 24 分,将答案填在答题纸上) 11.在平面直角坐标系中有一点  2,1A  ,将点 A先向右平移3个单位,再向下平移 2个单 位,则平移后点 A的坐标为 . 12.如图,点 , , ,B F C E 在一条直线上,已知 ,FB CE AC DF  ,请你添加一个适当的条 件 使得 ABC DEF   . 13.在实数范围内因式分解: 5 4x x  .[中%^@国教&育出~版网] 14. 黔东南下司“篮莓谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年 的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中柚取适量蓝莓进行检测,发 现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7 ,该果农今年的蓝莓 总产约量为800kg .由此估计该果农今年的“优质蓝莓”产量约是 kg. 15.如图,已知点 ,A B分别在反比例函数 1 2y x   和 2 ky x  的图象上,若点 A是线段OB的 中点,则 k的值为 .[来@源:中*&国教%育#出版网] 由莲山课件提供 http://www.5ykj.com/ 资源全部免费 由莲山课件提供 http://www.5ykj.com/ 资源全部免费 16.把多块大小不同的30直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板 AOB的一条直角边与 y轴重合且点 A的坐标为  0,1 , 30ABO   ;第二块三角板的斜边 1BB 与第一块三角板的斜边 AB垂直且交 y轴于点 1B ;第三块三角板的斜边 1 2B B 与第二 块三角板的斜边 1BB 垂直且交 x轴于点 2B ;第四块三角板的斜边 2 3B B 第三块三角板的斜 边 1 2B B 垂直且交 y轴于点 3B ;……按此规律继续下去,则点 2017B 的坐标为 . [来@源&:中*国教育出版网#~] 三、解答题 (本大题共 8 小题,共 86 分.解答应写出文字说明、证明过程或演 算步骤.) 17. 计算:  021 2 3 3.14 tan 60 8        . 18. 先化简,再求值 2 2 1 11 x xx x x x         ,其中 3 1x   . [来%源:@z~&zstep#.com] 19. 解不等式组  3 2 4 2 1 1 5 2 x x x x         ,并将它的解集在数轴上表示出来. 20. 某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表. 由莲山课件提供 http://www.5ykj.com/ 资源全部免费 由莲山课件提供 http://www.5ykj.com/ 资源全部免费 身高分组 频数 频率 152 155x  3 0.06 155 158x  7 0.14 158 161x  m 0.28 161 164x  13 n 164 167x  9 0.18 167 170x  3 0.06 170 173x  1 0.02 根据以上统计图表完成下列问题: (1)统计表中m  , n  ;并将频数分布直方图补充完整; (2)在这次测量中两班男生身高的中位数在: 范围内; (3)在身高 167cm 的 4人中,甲、乙两班各有 2人,现从 4人中随机推选 2人补充到学 校国旗护卫队中,请用列表法和画树状图的方法,求出这两人都来自相同班级的概率. 21. 如图,已知直线 PT 与 O 相切于点T ,直线 PO与 O 相交于 ,A B两点. (1)求证: 2PT PA PB  ; (2)若 3PT PB  ,求图中阴影部分的面积. 由莲山课件提供 http://www.5ykj.com/ 资源全部免费 由莲山课件提供 http://www.5ykj.com/ 资源全部免费 22. 如图,某校教学楼 AB后方有一斜坡,已知斜坡CD的长为12 米,坡角 为60 ,根 据有关部门的规定 39   时,才能不避免滑坡危险,学校为了消除安全隐患,决定对斜 坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米 才能保证教学楼的安全?(结果取整数)[www~.#zzst&*e@p.com] (参考数据: sin 39 0.63,cos39 0.78, tan39 0.81, 2 1.41, 3 1.7 3, 5 2.24        )[来@源:中*&~国%教育出版网] 23. 某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修.现学校招用了甲、 乙两个工程队,若两队合作,8天就可完成该项工程;若由甲队先单独做3天后,剩余部分 由乙队单独做需要18天才能完成. (1)求甲、乙两队工作效率分别是多少? (2)甲队每天工资3000元,乙队每天工资1400元,学校要求在12 天内将学生公寓完成. 若完成该工程甲队工作m天,乙队工作n天,求学校需支付的总工资w(元)与甲队工作 天数m(天)的函数关系式,并求出m的取值范围及w的最小值. 24.如图, M 的圆心  1,2 ,M M  经过坐标原点O ,与 y轴交于点 A,经过点 A的一 条直线 l解析式为: 1 4 2 y x   与 x轴交于点 B,以M 为顶点的抛物线经过 x轴上点  2,0D 和点  4,0C  . (1)求抛物线的解析式;[中%国教&*^育出版@网] 由莲山课件提供 http://www.5ykj.com/ 资源全部免费 由莲山课件提供 http://www.5ykj.com/ 资源全部免费 (2)求证:直线 l是 M 的切线; (3)点 P为抛物线上一动点,且 PE与直线 l垂直,垂足为 ;E PF y 轴,交直线 l于点 F . 是否存在这样的点 P,使 PEF 的面积最小,若存在,请求出此时点 P的坐标及 PEF 面 积的最小值;若不存在,请说明理由.

资料: 7.8万

进入主页

人气:

10000+的老师在这里下载备课资料