2017中考数学综合性问题专题复习试题(含答案和解析)
加入VIP免费下载

本文件来自资料包: 《2017中考数学综合性问题专题复习试题(含答案和解析)》 共有 2 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 综合性问题 一.选择题 ‎1. (2016·山东省东营市·3分)如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有( )‎ A.4个 B.3个 C.2个 D.1个 ‎【知识点】特殊平行四边形——矩形的性质、相似三角形——相似三角形的判定与性质、锐角三角函数——锐角三角函数值的求法 ‎【答案】B.‎ ‎【解析】∵矩形ABCD中,∴AD∥BC.∴△AEF∽△CAB….......................①正确;‎ ‎∵△AEF∽△CAB,∴==,∴CF=2AF……………………………②正确;‎ 过点D作DH⊥AC于点H.易证△ABF≌△CDH(AAS).∴AF=CH.‎ ‎∵EF∥DH,∴= =1.∴AF=FH.∴FH=CH.‎ ‎∴DH垂直平分CF.∴DF=DC. ……………………………………………③正确;‎ 设EF=1,则BF=2.∵△ABF∽△EAF.∴=.∴AF===.‎ ‎∴tan∠ABF==.∵∠CAD=∠ABF,∴tan∠CAD=tan∠ABF=.…………④错误.‎ 故选择B.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【点拨】本题考查了矩形的性质、相似三角形的判定和性质,图形面积的计算,锐角三角函数值的求法,正确的作出辅助线是解本题的关键.‎ ‎2.(2016·山东省德州市·3分)下列函数中,满足y的值随x的值增大而增大的是(  )‎ A.y=﹣2x B.y=3x﹣‎1 ‎C.y= D.y=x2‎ ‎【考点】反比例函数的性质;一次函数的性质;正比例函数的性质;二次函数的性质.‎ ‎【分析】根据一次函数、反比例函数、二次函数的性质考虑4个选项的单调性,由此即可得出结论.‎ ‎【解答】解:A、在y=﹣2x中,k=﹣2<0,‎ ‎∴y的值随x的值增大而减小;‎ B、在y=3x﹣1中,k=3>0,‎ ‎∴y的值随x的值增大而增大;‎ C、在y=中,k=1>0,‎ ‎∴y的值随x的值增大而减小;‎ D、二次函数y=x2,‎ 当x<0时,y的值随x的值增大而减小;‎ 当x>0时,y的值随x的值增大而增大.‎ 故选B.‎ ‎【点评】本题考查了一次函数的性质、反比例函数的性质以及二次函数的性质,解题的关键是根据函数的性质考虑其单调性.本题属于基础题,难度不大,解决该题型题目时,熟悉各类函数的性质及其图象是解题的关键.‎ ‎3.(2016·山东省德州市·3分)在矩形ABCD中,AD=2AB=4,E是AD的中点,一块足够大的三角板的直角顶点与点E重合,将三角板绕点E旋转,三角板的两直角边分别交AB,BC(或它们的延长线)于点M,N,设∠AEM=α(0°<α<90°),给出下列四个结论:‎ ‎①AM=CN;‎ ‎②∠AME=∠BNE;‎ ‎③BN﹣AM=2;‎ ‎④S△EMN=.‎ 上述结论中正确的个数是(  )‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 A.1 B.‎2 ‎C.3 D.4‎ ‎【考点】全等三角形的判定与性质;旋转的性质.‎ ‎【分析】①作辅助线EF⊥BC于点F,然后证明Rt△AME≌Rt△FNE,从而求出AM=FN,所以BM与CN的长度相等.‎ ‎②由①Rt△AME≌Rt△FNE,即可得到结论正确;‎ ‎③经过简单的计算得到BN﹣AM=BC﹣CN﹣AM=BC﹣BM﹣AM=BC﹣(BM+AM)=BC﹣AB=4﹣2=2,‎ ‎④用面积的和和差进行计算,用数值代换即可.‎ ‎【解答】解:①如图,‎ 在矩形ABCD中,AD=2AB,E是AD的中点,‎ 作EF⊥BC于点F,则有AB=AE=EF=FC,‎ ‎∵∠AEM+∠DEN=90°,∠FEN+∠DEN=90°,‎ ‎∴∠AEM=∠FEN,‎ 在Rt△AME和Rt△FNE中,‎ ‎,‎ ‎∴Rt△AME≌Rt△FNE,‎ ‎∴AM=FN,‎ ‎∴MB=CN.‎ ‎∵AM不一定等于CN,‎ ‎∴AM不一定等于CN,‎ ‎∴①错误,‎ ‎②由①有Rt△AME≌Rt△FNE,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴∠AME=∠BNE,‎ ‎∴②正确,‎ ‎③由①得,BM=CN,‎ ‎∵AD=2AB=4,‎ ‎∴BC=4,AB=2‎ ‎∴BN﹣AM=BC﹣CN﹣AM=BC﹣BM﹣AM=BC﹣(BM+AM)=BC﹣AB=4﹣2=2,‎ ‎∴③正确,‎ ‎④如图,‎ 由①得,CN=CF﹣FN=2﹣AM,AE=AD=2,AM=FN ‎∵tanα=,‎ ‎∴AM=AEtanα ‎∵cosα==,‎ ‎∴cos2α=,‎ ‎∴=1+=1+()2=1+tan2α,‎ ‎∴=2(1+tan2α)‎ ‎∴S△EMN=S四边形ABNE﹣S△AME﹣S△MBN ‎=(AE+BN)×AB﹣AE×AM﹣BN×BM ‎=(AE+BC﹣CN)×2﹣AE×AM﹣(BC﹣CN)×CN ‎=(AE+BC﹣CF+FN)×2﹣AE×AM﹣(BC﹣2+AM)(2﹣AM)‎ ‎=AE+BC﹣CF+AM﹣AE×AM﹣(2+AM)(2﹣AM)‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎=AE+AM﹣AE×AM+AM2‎ ‎=AE+AEtanα﹣AE2tanα+AE2tan2α ‎=2+2tanα﹣2tanα+2tan2α ‎=2(1+tan2α)‎ ‎=.‎ ‎∴④正确.‎ 故选C.‎ ‎【点评】此题是全等三角形的性质和判定题,主要考查了全等三角形的性质和判定,图形面积的计算锐角三角函数,解本题的关键是Rt△AME≌Rt△FNE,难点是计算S△EMN.‎ ‎4.(2016·广西百色·3分)直线y=kx+3经过点A(2,1),则不等式kx+3≥0的解集是(  )‎ A.x≤3 B.x≥‎3 C.x≥﹣3 D.x≤0‎ ‎【考点】一次函数与一元一次不等式.‎ ‎【分析】首先把点A(2,1)代入y=kx+3中,可得k的值,再解不等式kx+3≥0即可.‎ ‎【解答】解:∵y=kx+3经过点A(2,1),‎ ‎∴1=2k+3,‎ 解得:k=﹣1,‎ ‎∴一次函数解析式为:y=﹣x+3,‎ ‎﹣x+3≥0,‎ 解得:x≤3.‎ 故选A.‎ ‎5.(2016·广西桂林·3分)如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是(  )‎ A.x=2 B.x=‎0 C.x=﹣1 D.x=﹣3‎ ‎【考点】一次函数与一元一次方程.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【分析】所求方程的解,即为函数y=ax+b图象与x轴交点横坐标,确定出解即可.‎ ‎【解答】解:方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,‎ ‎∵直线y=ax+b过B(﹣3,0),‎ ‎∴方程ax+b=0的解是x=﹣3,‎ 故选D ‎6.(2016·广西桂林·3分)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是(  )‎ A.π B. C.3+π D.8﹣π ‎【考点】扇形面积的计算;旋转的性质.‎ ‎【分析】作DH⊥AE于H,根据勾股定理求出AB,根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积、利用扇形面积公式计算即可.‎ ‎【解答】解:作DH⊥AE于H,‎ ‎∵∠AOB=90°,OA=3,OB=2,‎ ‎∴AB==,‎ 由旋转的性质可知,OE=OB=2,DE=EF=AB=,△DHE≌△BOA,‎ ‎∴DH=OB=2,‎ 阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积 ‎=×5×2+×2×3+﹣‎ ‎=8﹣π,‎ 故选:D.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎[‎ ‎7.(2016·贵州安顺·3分)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是(  )‎ A.2B. C. D.‎ ‎【分析】根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.‎ ‎【解答】解:如图:,‎ 由勾股定理,得 AC=,AB=2,BC=,‎ ‎∴△ABC为直角三角形,‎ ‎∴tan∠B==,‎ 故选:D.‎ ‎【点评】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.‎ ‎8.(2016·内蒙古包头·3分)已知下列命题:①若a>b,则a2>b2;②若a>1,则(a﹣1)0=1;③两个全等的三角形的面积相等;④四条边相等的四边形是菱形.其中原命题与逆命题均为真命题的个数是(  )‎ A.4个 B.3个 C.2个 D.1个 ‎【考点】命题与定理.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【分析】交换原命题的题设和结论得到四个命题的逆命题,然后利用反例、零指数幂的意义、全等三角形的判定与性质和菱形的判定与性质判断各命题的真假.‎ ‎【解答】解:当a=0,b=﹣1时,a2<b2,所以命题“若a>b,则a2>b‎2”‎为假命题,其逆命题为若a2>b2;,则a>b“,此逆命题也是假命题,如a=﹣2,b=﹣1;‎ 若a>1,则(a﹣1)0=1,此命题为真命题,它的逆命题为:若(a﹣1)0=1,则a>1,此逆命题为假命题,因为(a﹣1)0=1,则a≠1;‎ 两个全等的三角形的面积相等,此命题为真命题,它的逆命题为面积相等的三角形全等,此逆命题为假命题;‎ 四条边相等的四边形是菱形,这个命题为真命题,它的逆命题为菱形的四条边相等,此逆命题为真命题.‎ 故选D.‎ ‎9.(2016·内蒙古包头·3分)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为(  )‎ A.(﹣3,0) B.(﹣6,0) C.(﹣,0) D.(﹣,0)‎ ‎【考点】一次函数图象上点的坐标特征;轴对称-最短路线问题.‎ ‎【分析】根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.‎ ‎【解答】解:作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 令y=x+4中x=0,则y=4,‎ ‎∴点B的坐标为(0,4);‎ 令y=x+4中y=0,则x+4=0,解得:x=﹣6,‎ ‎∴点A的坐标为(﹣6,0).‎ ‎∵点C、D分别为线段AB、OB的中点,‎ ‎∴点C(﹣3,2),点D(0,2).‎ ‎∵点D′和点D关于x轴对称,‎ ‎∴点D′的坐标为(0,﹣2).‎ 设直线CD′的解析式为y=kx+b,‎ ‎∵直线CD′过点C(﹣3,2),D′(0,﹣2),‎ ‎∴有,解得:,‎ ‎∴直线CD′的解析式为y=﹣x﹣2.‎ 令y=﹣x﹣2中y=0,则0=﹣x﹣2,解得:x=﹣,‎ ‎∴点P的坐标为(﹣,0).‎ 故选C.‎ ‎10.(2016·青海西宁·3分)如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是(  )‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 A. B. C. D.‎ ‎【考点】动点问题的函数图象.‎ ‎【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.‎ ‎【解答】解:作AD∥x轴,作CD⊥AD于点D,若右图所示,‎ 由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,‎ ‎∵AD∥x轴,‎ ‎∴∠DAO+∠AOD=180°,‎ ‎∴∠DAO=90°,‎ ‎∴∠OAB+∠BAD=∠BAD+∠DAC=90°,‎ ‎∴∠OAB=∠DAC,‎ 在△OAB和△DAC中,‎ ‎,‎ ‎∴△OAB≌△DAC(AAS),‎ ‎∴OB=CD,‎ ‎∴CD=x,‎ ‎∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,‎ ‎∴y=x+1(x>0).‎ 故选:A.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎ ‎ ‎11. (2016·四川眉山·3分)下列命题为真命题的是(  )‎ A.有两边及一角对应相等的两个三角形全等 B.方程x2﹣x+2=0有两个不相等的实数根 C.面积之比为1:4的两个相似三角形的周长之比是1:4‎ D.顺次连接任意四边形各边中点得到的四边形是平行四边形 ‎【分析】根据各个选项中的命题,假命题举出反例或者说明错在哪,真命题说明理由即可解答本题.‎ ‎【解答】解:有两边及其夹角对应相等的两个三角形全等,选项A中的一角不一定是对应相等两边的夹角,故选项A错误;‎ ‎∵x2﹣x+2=0,‎ ‎∴△=(﹣1)2﹣4×1×2=1﹣8=﹣7<0,‎ ‎∴方程x2﹣x+2=0没有实数根,‎ 故选项B错误;‎ 面积之比为1:4的两个相似三角形的周长之比是1:2,故选项C错误;‎ 顺次连接任意四边形各边中点得到的四边形,这个四边形的对边都等于原来四边形与这组对边相对的对角线的一半,并且和这条对角线平行,故得到的中点四边形是平行四边形,故选项D正确;‎ 故选D.‎ ‎【点评】本题考查命题和定理,解题的关键是明确什么命题是真命题、什么命题的假命题,对真假命题可以说明理由,真命题说明根据,假命题举出反例或通过论证说明.‎ ‎12. (2016·四川眉山·3分)如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是(  )‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 A.4个 B.3个 C.2个 D.1个 ‎【分析】①利用线段垂直平分线的性质的逆定理可得结论;‎ ‎②证△OMB≌△OEB得△EOB≌△CMB;‎ ‎③先证△BEF是等边三角形得出BF=EF,再证▱DEBF得出DE=BF,所以得DE=EF;‎ ‎④由②可知△BCM≌△BEO,则面积相等,△AOE和△BEO属于等高的两个三角形,其面积比就等于两底的比,即S△AOE:S△BOE=AE:BE,由直角三角形30°角所对的直角边是斜边的一半得出BE=2OE=2AE,得出结论S△AOE:S△BOE=AE:BE=1:2.‎ ‎【解答】解:①∵矩形ABCD中,O为AC中点,‎ ‎∴OB=OC,‎ ‎∵∠COB=60°,‎ ‎∴△OBC是等边三角形,‎ ‎∴OB=BC,‎ ‎∵FO=FC,‎ ‎∴FB垂直平分OC,‎ 故①正确;‎ ‎②∵FB垂直平分OC,‎ ‎∴△CMB≌△OMB,‎ ‎∵OA=OC,∠FOC=∠EOA,∠DCO=∠BAO,‎ ‎∴△FOC≌△EOA,‎ ‎∴FO=EO,‎ 易得OB⊥EF,‎ ‎∴△OMB≌△OEB,‎ ‎∴△EOB≌△CMB,‎ 故②正确;‎ ‎③由△OMB≌△OEB≌△CMB得∠1=∠2=∠3=30°,BF=BE,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴△BEF是等边三角形,‎ ‎∴BF=EF,‎ ‎∵DF∥BE且DF=BE,‎ ‎∴四边形DEBF是平行四边形,‎ ‎∴DE=BF,‎ ‎∴DE=EF,‎ 故③正确;‎ ‎④在直角△BOE中∵∠3=30°,‎ ‎∴BE=2OE,‎ ‎∵∠OAE=∠AOE=30°,‎ ‎∴AE=OE,‎ ‎∴BE=2AE,‎ ‎∴S△AOE:S△BCM=S△AOE:S△BOE=1:2,‎ 故④错误;‎ 所以其中正确结论的个数为3个;‎ 故选B.‎ ‎【点评】本题综合性比较强,既考查了矩形的性质、等腰三角形的性质,又考查了全等三角形的性质和判定,及线段垂直平分线的性质,内容虽多,但不复杂;看似一个选择题,其实相当于四个证明题,属于常考题型.‎ ‎13. (2016·四川攀枝花)如图,正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+4,其中正确的结论个数为(  )‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 A.2 B.‎3 C.4 D.5‎ ‎【考点】四边形综合题.‎ ‎【分析】①由四边形ABCD是正方形,可得∠GAD=∠ADO=45°,又由折叠的性质,可求得∠ADG的度数;‎ ‎②由AE=EF<BE,可得AD>2AE;‎ ‎③由AG=GF>OG,可得△AGD的面积>△OGD的面积;‎ ‎④由折叠的性质与平行线的性质,易得△EFG是等腰三角形,即可证得AE=GF;‎ ‎⑤易证得四边形AEFG是菱形,由等腰直角三角形的性质,即可得BE=2OG;‎ ‎⑥根据四边形AEFG是菱形可知AB∥GF,AB=GF,再由∠BAO=45°,∠GOF=90°可得出△OGF时等腰直角三角形,由S△OGF=1求出GF的长,进而可得出BE及AE的长,利用正方形的面积公式可得出结论.‎ ‎【解答】解:∵四边形ABCD是正方形,‎ ‎∴∠GAD=∠ADO=45°,‎ 由折叠的性质可得:∠ADG=∠ADO=22.5°,‎ 故①正确.‎ ‎∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,‎ ‎∴AE=EF<BE,‎ ‎∴AE<AB,‎ ‎∴>2,‎ 故②错误.‎ ‎∵∠AOB=90°,‎ ‎∴AG=FG>OG,△AGD与△OGD同高,‎ ‎∴S△AGD>S△OGD,‎ 故③错误.‎ ‎∵∠EFD=∠AOF=90°,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴EF∥AC,‎ ‎∴∠FEG=∠AGE,‎ ‎∵∠AGE=∠FGE,‎ ‎∴∠FEG=∠FGE,‎ ‎∴EF=GF,‎ ‎∵AE=EF,‎ ‎∴AE=GF,‎ 故④正确.‎ ‎∵AE=EF=GF,AG=GF,‎ ‎∴AE=EF=GF=AG,‎ ‎∴四边形AEFG是菱形,‎ ‎∴∠OGF=∠OAB=45°,‎ ‎∴EF=GF=OG,‎ ‎∴BE=EF=×OG=2OG.‎ 故⑤正确.‎ ‎∵四边形AEFG是菱形,‎ ‎∴AB∥GF,AB=GF.‎ ‎∵∠BAO=45°,∠GOF=90°,‎ ‎∴△OGF时等腰直角三角形.‎ ‎∵S△OGF=1,‎ ‎∴OG2=1,解得OG=,‎ ‎∴BE=2OG=2,GF===2,‎ ‎∴AE=GF=2,‎ ‎∴AB=BE+AE=2+2,‎ ‎∴S正方形ABCD=AB2=(2+2)2=12+8,故⑥错误.‎ ‎∴其中正确结论的序号是:①④⑤.‎ 故选B.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【点评】此题考查的是四边形综合题,涉及到正方形的性质、折叠的性质、等腰直角三角形的性质以及菱形的判定与性质等知识.此题综合性较强,难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.‎ ‎14.(2016·四川南充)如图,正五边形的边长为2,连结对角线AD,BE,CE,线段AD分别与BE和CE相交于点M,N.给出下列结论:①∠AME=108°;②AN2=AMAD;③MN=3﹣;④S△EBC=2﹣1.其中正确结论的个数是(  ) ‎ ‎ ‎ A.1个 B.2个 C.3个 D.4个 ‎【分析】根据正五边形的性质得到∠ABE=∠AEB=∠EAD=36°,根据三角形的内角和即可得到结论;由于∠AEN=108°﹣36°=72°,∠ANE=36°+36°=72°,得到∠AEN=∠ANE,根据等腰三角形的判定定理得到AE=AN,同理DE=DM,根据相似三角形的性质得到,等量代换得到AN2=AMAD;根据AE2=AMAD,列方程得到MN=3﹣;在正五边形ABCDE中,由于BE=CE=AD=1+,得到BH=BC=1,根据勾股定理得到EH==,根据三角形的面积得到结论. ‎ ‎【解答】解:∵∠BAE=∠AED=108°, ‎ ‎∵AB=AE=DE, ‎ ‎∴∠ABE=∠AEB=∠EAD=36°, ‎ ‎∴∠AME=180°﹣∠EAM﹣∠AEM=108°,故①正确; ‎ ‎∵∠AEN=108°﹣36°=72°,∠ANE=36°+36°=72°, ‎ ‎∴∠AEN=∠ANE, ‎ ‎∴AE=AN, ‎ 同理DE=DM, ‎ ‎∴AE=DM, ‎ ‎∵∠EAD=∠AEM=∠ADE=36°, ‎ ‎∴△AEM∽△ADE, ‎ ‎∴, ‎ ‎∴AE2=AMAD; ‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴AN2=AMAD;故②正确; ‎ ‎∵AE2=AMAD, ‎ ‎∴22=(2﹣MN)(4﹣MN), ‎ ‎∴MN=3﹣;故③正确; ‎ 在正五边形ABCDE中, ‎ ‎∵BE=CE=AD=1+, ‎ ‎∴BH=BC=1, ‎ ‎∴EH==, ‎ ‎∴S△EBC=BCEH=×2×=,故④错误; ‎ 故选C. ‎ ‎ ‎ ‎【点评】本题考查了相似三角形的判定和性质,勾股定理,正五边形的性质,熟练掌握正五边形的性质是解题的关键.‎ ‎15. (2016·黑龙江龙东·3分)若点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,则△ABC的面积为(  )‎ A.2+B. C.2+或2﹣D.4+2或2﹣‎ ‎【考点】三角形的外接圆与外心;等腰三角形的性质.‎ ‎【分析】根据题意可以画出相应的图形,然后根据不同情况,求出相应的边的长度,从而可以求出不同情况下△ABC的面积,本题得以解决.‎ ‎【解答】解:由题意可得,如右图所示,‎ 存在两种情况,‎ 当△ABC为△A1BC时,连接OB、OC,‎ ‎∵点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,OB=OC,‎ ‎∴△OBC为等边三角形,OB=OC=BC=2,OA1⊥BC于点D,‎ ‎∴CD=1,OD=,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴=2﹣,‎ 当△ABC为△A2BC时,连接OB、OC,‎ ‎∵点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,OB=OC,‎ ‎∴△OBC为等边三角形,OB=OC=BC=2,OA1⊥BC于点D,‎ ‎∴CD=1,OD=,‎ ‎∴S△A2BC===2+,‎ 由上可得,△ABC的面积为或2+,‎ 故选C.‎ 二、填空题 ‎1.(2016·贵州安顺·4分)如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1= 45 度.‎ ‎【分析】先根据等腰直角三角形的性质求出∠ABC的度数,再由平行线的性质即可得出结论.‎ ‎【解答】解:∵△ABC为等腰直角三角形,∠BAC=90°,‎ ‎∴∠ABC=∠ACB=45°,‎ ‎∵m∥n,‎ ‎∴∠1=45°;‎ 故答案为:45.‎ ‎【点评】此题考查了等腰直角三角形和平行线的性质,用到的知识点是:两直线平行,同位角相和等腰直角三角形的性质;关键是求出∠ABC的度数.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎2.(2016·贵州安顺·4分)如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=EH,那么EH的长为  .‎ ‎【分析】设EH=3x,表示出EF,由AD﹣EF表示出三角形AEH的边EH上的高,根据三角形AEH与三角形ABC相似,利用相似三角形对应边上的高之比等于相似比求出x的值,即为EH的长.‎ ‎【解答】解:如图所示:‎ ‎∵四边形EFGH是矩形,‎ ‎∴EH∥BC,‎ ‎∴△AEH∽△ABC,‎ ‎∵AM⊥EH,AD⊥BC,‎ ‎∴,‎ 设EH=3x,则有EF=2x,AM=AD﹣EF=2﹣2x,‎ ‎∴,‎ 解得:x=,‎ 则EH=.‎ 故答案为:.‎ ‎【点评】此题考查了相似三角形的判定与性质,以及矩形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎3. (2016·四川宜宾)如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有 ①②⑤ (写出所有正确结论的序号)‎ ‎①△CMP∽△BPA;‎ ‎②四边形AMCB的面积最大值为10;‎ ‎③当P为BC中点时,AE为线段NP的中垂线;‎ ‎④线段AM的最小值为2;‎ ‎⑤当△ABP≌△ADN时,BP=4﹣4.‎ ‎【考点】相似形综合题.‎ ‎【分析】①正确,只要证明∠APM=90°即可解决问题.‎ ‎②正确,设PB=x,构建二次函数,利用二次函数性质解决问题即可.‎ ‎③错误,设ND=NE=y,在RT△PCN中,利用勾股定理求出y即可解决问题.‎ ‎④错误,作MG⊥AB于G,因为AM==,所以AG最小时AM最小,构建二次函数,求得AG的最小值为3,AM的最小值为5.‎ ‎⑤正确,在AB上取一点K使得AK=PK,设PB=z,列出方程即可解决问题.‎ ‎【解答】解:∵∠APB=∠APE,∠MPC=∠MPN,‎ ‎∵∠CPN+∠NPB=180°,‎ ‎∴2∠NPM+2∠APE=180°,‎ ‎∴∠MPN+∠APE=90°,‎ ‎∴∠APM=90°,‎ ‎∵∠CPM+∠APB=90°,∠APB+∠PAB=90°,‎ ‎∴∠CPM=∠PAB,‎ ‎∵四边形ABCD是正方形,‎ ‎∴AB=CB=DC=AD=4,∠C=∠B=90°,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴△CMP∽△BPA.故①正确,‎ 设PB=x,则CP=4﹣x,‎ ‎∵△CMP∽△BPA,‎ ‎∴=,‎ ‎∴CM=x(4﹣x),‎ ‎∴S四边形AMCB= [4+x(4﹣x)]×4=﹣x2+2x+8=﹣(x﹣2)2+10,‎ ‎∴x=2时,四边形AMCB面积最大值为10,故②正确,‎ 当PB=PC=PE=2时,设ND=NE=y,‎ 在RT△PCN中,(y+2)2=(4﹣y)2+22解得y=,‎ ‎∴NE≠EP,故③错误,‎ 作MG⊥AB于G,‎ ‎∵AM==,‎ ‎∴AG最小时AM最小,‎ ‎∵AG=AB﹣BG=AB﹣CM=4﹣x(4﹣x)=(x﹣1)2+3,‎ ‎∴x=1时,AG最小值=3,‎ ‎∴AM的最小值==5,故④错误.‎ ‎∵△ABP≌△ADN时,‎ ‎∴∠PAB=∠DAN=22.5°,在AB上取一点K使得AK=PK,设PB=z,‎ ‎∴∠KPA=∠KAP=22.5°‎ ‎∵∠PKB=∠KPA+∠KAP=45°,‎ ‎∴∠BPK=∠BKP=45°,‎ ‎∴PB=BK=z,AK=PK=z,‎ ‎∴z+z=4,‎ ‎∴z=4﹣4,‎ ‎∴PB=4﹣4故⑤正确.‎ 故答案为①②⑤.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎4.(2016·内蒙古包头·3分)如图,已知△ABC是等边三角形,点D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF,CF,连接BE并延长交CF于点G.下列结论:‎ ‎①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,则GF=2EG.其中正确的结论是 ①②③④ .(填写所有正确结论的序号)‎ ‎【考点】全等三角形的判定与性质;等边三角形的性质.‎ ‎【分析】①正确.根据两角夹边对应相等的两个三角形全等即可判断.‎ ‎②正确.只要证明四边形ABDF是平行四边形即可.‎ ‎③正确.只要证明△BCE≌△FDC.‎ ‎④正确.只要证明△BDE∽△FGE,得=,由此即可证明.‎ ‎【解答】解:①正确.∵△ABC是等边三角形,‎ ‎∴AB=AC=BC,∠BAC=∠ACB=60°,‎ ‎∵DE=DC,‎ ‎∴△DEC是等边三角形,‎ ‎∴ED=EC=DC,∠DEC=∠AEF=60°,‎ ‎∵EF=AE,‎ ‎∴△AEF是等边三角形,‎ ‎∴AF=AE,∠EAF=60°,‎ 在△ABE和△ACF中,‎ ‎,‎ ‎∴△ABE≌△ACF,故①正确.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎②正确.∵∠ABC=∠FDC,‎ ‎∴AB∥DF,‎ ‎∵∠EAF=∠ACB=60°,‎ ‎∴AB∥AF,‎ ‎∴四边形ABDF是平行四边形,‎ ‎∴DF=AB=BC,故②正确.‎ ‎③正确.∵△ABE≌△ACF,‎ ‎∴BE=CF,S△ABE=S△AFC,‎ 在△BCE和△FDC中,‎ ‎,‎ ‎∴△BCE≌△FDC,‎ ‎∴S△BCE=S△FDC,‎ ‎∴S△ABC=S△ABE+S△BCE=S△ACF+S△BCE=S△ABC=S△ACF+S△DCF,故③正确.‎ ‎④正确.∵△BCE≌△FDC,‎ ‎∴∠DBE=∠EFG,∵∠BED=∠FEG,‎ ‎∴△BDE∽△FGE,‎ ‎∴=,‎ ‎∴=,‎ ‎∵BD=2DC,DC=DE,‎ ‎∴=2,‎ ‎∴FG=2EG.故④正确.‎ ‎ ‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎5. (2016·青海西宁·2分)如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为  .‎ ‎【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.‎ ‎【分析】由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;则可得到AE=CM=1,正方形的边长为3,用AB﹣AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM﹣FM=BM﹣EF=4﹣x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为FM的长.‎ ‎【解答】解:∵△DAE逆时针旋转90°得到△DCM,‎ ‎∴∠FCM=∠FCD+∠DCM=180°,‎ ‎∴F、C、M三点共线,‎ ‎∴DE=DM,∠EDM=90°,‎ ‎∴∠EDF+∠FDM=90°,‎ ‎∵∠EDF=45°,‎ ‎∴∠FDM=∠EDF=45°,‎ 在△DEF和△DMF中,‎ ‎,‎ ‎∴△DEF≌△DMF(SAS),‎ ‎∴EF=MF,‎ 设EF=MF=x,‎ ‎∵AE=CM=1,且BC=3,‎ ‎∴BM=BC+CM=3+1=4,‎ ‎∴BF=BM﹣MF=BM﹣EF=4﹣x,‎ ‎∵EB=AB﹣AE=3﹣1=2,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 在Rt△EBF中,由勾股定理得EB2+BF2=EF2,‎ 即22+(4﹣x)2=x2,‎ 解得:x=,‎ ‎∴FM=.‎ 故答案为:.‎ ‎6. (2016·陕西·3分)如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为 2﹣2 .‎ ‎【考点】菱形的性质;等腰三角形的判定;等边三角形的性质.‎ ‎【分析】如图连接AC、BD交于点O,以B为圆心BC为半径画圆交BD于P.此时△PBC是等腰三角形,线段PD最短,求出BD即可解决问题.‎ ‎【解答】解:如图连接AC、BD交于点O,以B为圆心BC为半径画圆交BD于P.‎ 此时△PBC是等腰三角形,线段PD最短,‎ ‎∵四边形ABCD是菱形,∠ABC=60°,‎ ‎∴AB=BC=CD=AD,∠ABC=∠ADC=60°,‎ ‎∴△ABC,△ADC是等边三角形,‎ ‎∴BO=DO=×2=,‎ ‎∴BD=2BO=2,‎ ‎∴PD最小值=BD﹣BP=2﹣2.‎ 故答案为2﹣2.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 三、 解答题 ‎1. (2016·内蒙古包头)如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.‎ ‎(1)求证:AE=BF;‎ ‎(2)连接GB,EF,求证:GB∥EF;‎ ‎(3)若AE=1,EB=2,求DG的长.‎ ‎【考点】圆的综合题.‎ ‎【分析】(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;‎ ‎(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行即可得证;‎ ‎(3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长即可.‎ ‎【解答】(1)证明:连接BD,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 在Rt△ABC中,∠ABC=90°,AB=BC,‎ ‎∴∠A=∠C=45°,‎ ‎∵AB为圆O的直径,‎ ‎∴∠ADB=90°,即BD⊥AC,‎ ‎∴AD=DC=BD=AC,∠CBD=∠C=45°,‎ ‎∴∠A=∠FBD,‎ ‎∵DF⊥DG,‎ ‎∴∠FDG=90°,‎ ‎∴∠FDB+∠BDG=90°,‎ ‎∵∠EDA+∠BDG=90°,‎ ‎∴∠EDA=∠FDB,‎ 在△AED和△BFD中,‎ ‎,‎ ‎∴△AED≌△BFD(ASA),‎ ‎∴AE=BF;‎ ‎(2)证明:连接EF,BG,‎ ‎∵△AED≌△BFD,‎ ‎∴DE=DF,‎ ‎∵∠EDF=90°,‎ ‎∴△EDF是等腰直角三角形,‎ ‎∴∠DEF=45°,‎ ‎∵∠G=∠A=45°,‎ ‎∴∠G=∠DEF,‎ ‎∴GB∥EF;‎ ‎(3)∵AE=BF,AE=1,‎ ‎∴BF=1,‎ 在Rt△EBF中,∠EBF=90°,‎ ‎∴根据勾股定理得:EF2=EB2+BF2,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∵EB=2,BF=1,‎ ‎∴EF==,‎ ‎∵△DEF为等腰直角三角形,∠EDF=90°,‎ ‎∴cos∠DEF=,‎ ‎∵EF=,‎ ‎∴DE=×=,‎ ‎∵∠G=∠A,∠GEB=∠AED,‎ ‎∴△GEB∽△AED,‎ ‎∴=,即GE•ED=AE•EB,‎ ‎∴•GE=2,即GE=,‎ 则GD=GE+ED=.‎ ‎2. (2016·内蒙古包头)如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上点,连接EF.‎ ‎(1)图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF=3S△EDF,求AE的长;‎ ‎(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥CA.‎ ‎①试判断四边形AEMF的形状,并证明你的结论;‎ ‎②求EF的长;‎ ‎(3)如图③,若FE的延长线与BC的延长线交于点N,CN=1,CE=,求的值.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【考点】三角形综合题.‎ ‎【分析】(1)先利用折叠的性质得到EF⊥AB,△AEF≌△DEF,则S△AEF≌S△DEF,则易得S△ABC=4S△AEF,再证明Rt△AEF∽Rt△ABC,然后根据相似三角形的性质得到=()2,再利用勾股定理求出AB即可得到AE的长;‎ ‎(2)①通过证明四条边相等判断四边形AEMF为菱形;‎ ‎②连结AM交EF于点O,如图②,设AE=x,则EM=x,CE=4﹣x,先证明△CME∽△CBA得到==,解出x后计算出CM=,再利用勾股定理计算出AM,然后根据菱形的面积公式计算EF;‎ ‎(3)如图③,作FH⊥BC于H,先证明△NCE∽△NFH,利用相似比得到FH:NH=4:7,设FH=4x,NH=7x,则CH=7x﹣1,BH=3﹣(7x﹣1)=4﹣7x,再证明△BFH∽△BAC,利用相似比可计算出x=,则可计算出FH和BH,接着利用勾股定理计算出BF,从而得到AF的长,于是可计算出的值.‎ ‎【解答】解:(1)如图①,‎ ‎∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,‎ ‎∴EF⊥AB,△AEF≌△DEF,‎ ‎∴S△AEF≌S△DEF,‎ ‎∵S四边形ECBF=3S△EDF,‎ ‎∴S△ABC=4S△AEF,‎ 在Rt△ABC中,∵∠ACB=90°,AC=4,BC=3,‎ ‎∴AB==5,‎ ‎∵∠EAF=∠BAC,‎ ‎∴Rt△AEF∽Rt△ABC,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴=()2,即()2=,‎ ‎∴AE=;‎ ‎(2)①四边形AEMF为菱形.理由如下:‎ 如图②,∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,‎ ‎∴AE=EM,AF=MF,∠AFE=∠MFE,‎ ‎∵MF∥AC,‎ ‎∴∠AEF=∠MFE,‎ ‎∴∠AEF=∠AFE,‎ ‎∴AE=AF,‎ ‎∴AE=EM=MF=AF,‎ ‎∴四边形AEMF为菱形;‎ ‎②连结AM交EF于点O,如图②,‎ 设AE=x,则EM=x,CE=4﹣x,‎ ‎∵四边形AEMF为菱形,‎ ‎∴EM∥AB,‎ ‎∴△CME∽△CBA,‎ ‎∴==,即==,解得x=,CM=,‎ 在Rt△ACM中,AM===,‎ ‎∵S菱形AEMF=EF•AM=AE•CM,‎ ‎∴EF=2×=;‎ ‎(3)如图③,作FH⊥BC于H,‎ ‎∵EC∥FH,‎ ‎∴△NCE∽△NFH,‎ ‎∴CN:NH=CE:FH,即1:NH=:FH,‎ ‎∴FH:NH=4:7,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 设FH=4x,NH=7x,则CH=7x﹣1,BH=3﹣(7x﹣1)=4﹣7x,‎ ‎∵FH∥AC,‎ ‎∴△BFH∽△BAC,‎ ‎∴BH:BC=FH:AC,即(4﹣7x):3=4x:4,解得x=,‎ ‎∴FH=4x=,BH=4﹣7x=,‎ 在Rt△BFH中,BF==2,‎ ‎∴AF=AB﹣BF=5﹣2=3,‎ ‎∴=.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎3. 28.(2016·青海西宁·12分)如图,在平面直角坐标系中,四边形ABCD是以AB为直径的⊙M的内接四边形,点A,B在x轴上,△MBC是边长为2的等边三角形,过点M作直线l与x轴垂直,交⊙M于点E,垂足为点M,且点D平分.‎ ‎(1)求过A,B,E三点的抛物线的解析式;‎ ‎(2)求证:四边形AMCD是菱形;‎ ‎(3)请问在抛物线上是否存在一点P,使得△ABP的面积等于定值5?若存在,请求出所有的点P的坐标;若不存在,请说明理由.‎ ‎【考点】二次函数综合题.‎ ‎【分析】(1)根据题意首先求出抛物线顶点E的坐标,再利用顶点式求出函数解析式;‎ ‎(2)利用等边三角形的性质结合圆的有关性质得出∠AMD=∠CMD=∠AMC=60°,进而得出DC=CM=MA=AD,即可得出答案;‎ ‎(3)首先表示出△ABP的面积进而求出n的值,再代入函数关系式求出P点坐标.‎ ‎【解答】(1)解:由题意可知,△MBC为等边三角形,点A,B,C,E均在⊙M上,‎ 则MA=MB=MC=ME=2,‎ 又∵CO⊥MB,‎ ‎∴MO=BO=1,‎ ‎∴A(﹣3,0),B(1,0),E(﹣1,﹣2),‎ 抛物线顶点E的坐标为(﹣1,﹣2),‎ 设函数解析式为y=a(x+1)2﹣2(a≠0)‎ 把点B(1,0)代入y=a(x+1)2﹣2,‎ 解得:a=,‎ 故二次函数解析式为:y=(x+1)2﹣2;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(2)证明:连接DM,‎ ‎∵△MBC为等边三角形,‎ ‎∴∠CMB=60°,‎ ‎∴∠AMC=120°,‎ ‎∵点D平分弧AC,‎ ‎∴∠AMD=∠CMD=∠AMC=60°,‎ ‎∵MD=MC=MA,‎ ‎∴△MCD,△MDA是等边三角形,‎ ‎∴DC=CM=MA=AD,‎ ‎∴四边形AMCD为菱形(四条边都相等的四边形是菱形);‎ ‎(3)解:存在.‎ 理由如下:‎ 设点P的坐标为(m,n)‎ ‎∵S△ABP=AB|n|,AB=4‎ ‎∴×4×|n|=5,‎ 即2|n|=5,‎ 解得:n=±,‎ 当时,(m+1)2﹣2=,‎ 解此方程得:m1=2,m2=﹣4‎ 即点P的坐标为(2,),(﹣4,),‎ 当n=﹣时,(m+1)2﹣2=﹣,‎ 此方程无解,‎ 故所求点P坐标为(2,),(﹣4,).‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎ ‎ ‎4. (2016·山东潍坊)如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P时直线AC下方抛物线上的动点.‎ ‎(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;‎ ‎(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.‎ ‎【考点】二次函数综合题.‎ ‎【分析】(1)用待定系数法求出抛物线解析式即可;‎ ‎(2)设点P(m, m2+‎2m+1),表示出PE=﹣m2﹣‎3m,再用S四边形AECP=S△AEC+S△APC=AC×PE,建立函数关系式,求出极值即可;‎ ‎(3)先判断出PF=CF,再得到∠PCF=∠EAF,以C、P、Q为顶点的三角形与△ABC相似,分两种情况计算即可.‎ ‎【解答】解:(1)∵点A(0,1).B(﹣9,10)在抛物线上,‎ ‎∴,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴,‎ ‎∴抛物线的解析式为y=x2+2x+1,‎ ‎(2)∵AC∥x轴,A(0,1)‎ ‎∴x2+2x+1=1,‎ ‎∴x1=6,x2=0,‎ ‎∴点C的坐标(﹣6,1),‎ ‎∵点A(0,1).B(﹣9,10),‎ ‎∴直线AB的解析式为y=﹣x+1,‎ 设点P(m, m2+‎2m+1)‎ ‎∴E(m,﹣m+1)‎ ‎∴PE=﹣m+1﹣(m2+‎2m+1)=﹣m2﹣‎3m,‎ ‎∵AC⊥EP,AC=6,‎ ‎∴S四边形AECP ‎=S△AEC+S△APC ‎=AC×EF+AC×PF ‎=AC×(EF+PF)‎ ‎=AC×PE ‎=×6×(﹣m2﹣‎3m)‎ ‎=﹣m2﹣‎‎9m ‎=﹣(m+)2+,‎ ‎∵﹣6<m<0‎ ‎∴当m=﹣时,四边形AECP的面积的最大值是,‎ 此时点P(﹣,﹣).‎ ‎(3)∵y=x2+2x+1=(x+3)2﹣2,‎ ‎∴P(﹣3,﹣2),‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴PF=yF﹣yP=3,CF=xF﹣xC=3,‎ ‎∴PF=CF,‎ ‎∴∠PCF=45°‎ 同理可得:∠EAF=45°,‎ ‎∴∠PCF=∠EAF,‎ ‎∴在直线AC上存在满足条件的Q,‎ 设Q(t,1)且AB=9,AC=6,CP=3‎ ‎∵以C、P、Q为顶点的三角形与△ABC相似,‎ ‎①当△CPQ∽△ABC时,‎ ‎∴,‎ ‎∴,‎ ‎∴t=﹣4,‎ ‎∴Q(﹣4,1)‎ ‎②当△CQP∽△ABC时,‎ ‎∴,‎ ‎∴,‎ ‎∴t=3,‎ ‎∴Q(3,1).‎ ‎5.(2016·陕西)问题提出 ‎(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.‎ 问题探究 ‎(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.‎ 问题解决 ‎(3)如图③,有一矩形板材ABCD,AB=‎3米,AD=‎6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.‎ ‎【考点】四边形综合题.‎ ‎【分析】(1)作B关于AC 的对称点D,连接AD,CD,△ACD即为所求;‎ ‎(2)作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,得到此时四边形EFGH的周长最小,根据轴对称的性质得到BF′=BF=AF=2,DE′=DE=2,∠A=90°,于是得到AF′=6,AE′=8,求出E′F′=10,EF=2即可得到结论;‎ ‎(3)根据余角的性质得到1=∠2,推出△AEF≌△BGF,根据全等三角形的性质得到AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x根据勾股定理列方程得到AF=BG=1,BF=AE=2,作△EFG关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以EG为半径作⊙O,则∠EHG=45°的点在⊙O上,连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,连接EH′GH′,则∠EH′G=45°,于是得到四边形EFGH′是符合条件的最大部件,根据矩形的面积公式即可得到结论.‎ ‎【解答】解:(1)如图1,△ADC即为所求;‎ ‎(2)存在,理由:作E关于CD的对称点E′,‎ 作F关于BC的对称点F′,‎ 连接E′F′,交BC于G,交CD于H,连接FG,EH,‎ 则F′G=FG,E′H=EH,则此时四边形EFGH的周长最小,‎ 由题意得:BF′=BF=AF=2,DE′=DE=2,∠A=90°,‎ ‎∴AF′=6,AE′=8,‎ ‎∴E′F′=10,EF=2,‎ ‎∴四边形EFGH的周长的最小值=EF+FG+GH+HE=EF+E′F′=2+10,‎ ‎∴在边BC、CD上分别存在点G、H,‎ 使得四边形EFGH的周长最小,‎ 最小值为2+10;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(3)能裁得,‎ 理由:∵EF=FG=,∠A=∠B=90°,∠1+∠AFE=∠2+AFE=90°,‎ ‎∴∠1=∠2,‎ 在△AEF与△BGF中,,‎ ‎∴△AEF≌△BGF,‎ ‎∴AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x,‎ ‎∴x2+(3﹣x)2=()2,解得:x=1,x=2(不合题意,舍去),‎ ‎∴AF=BG=1,BF=AE=2,‎ ‎∴DE=4,CG=5,‎ 连接EG,‎ 作△EFG关于EG的对称△EOG,‎ 则四边形EFGO是正方形,∠EOG=90°,‎ 以O为圆心,以EG为半径作⊙O,‎ 则∠EHG=45°的点在⊙O上,‎ 连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,‎ 连接EH′GH′,则∠EH′G=45°,‎ 此时,四边形EFGH′是要想裁得符合要求的面积最大的,‎ ‎∴C在线段EG的垂直平分线设,‎ ‎∴点F,O,H′,C在一条直线上,‎ ‎∵EG=,‎ ‎∴OF=EG=,‎ ‎∵CF=2,‎ ‎∴OC=,‎ ‎∵OH′=OE=FG=,‎ ‎∴OH′<OC,‎ ‎∴点H′在矩形ABCD的内部,‎ ‎∴可以在矩形ABCD中,裁得符合条件的面积最大的四边形EFGH′部件,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 这个部件的面积=EG•FH′=××(+)=5+,‎ ‎∴当所裁得的四边形部件为四边形EFGH′时,裁得了符合条件的最大部件,这个部件的面积为(5+)m2.‎ ‎6.(2016·四川眉山)已知如图,在平面直角坐标系xOy中,点A、B、C分别为坐标轴上上的三个点,且OA=1,OB=3,OC=4,‎ ‎(1)求经过A、B、C三点的抛物线的解析式;‎ ‎(2)在平面直角坐标系xOy中是否存在一点P,使得以以点A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;‎ ‎(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM﹣AM|的最大值时点M的坐标,并直接写出|PM﹣AM|的最大值.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【分析】(1)设抛物线的解析式为y=ax2+bx+c,把A,B,C三点坐标代入求出a,b,c的值,即可确定出所求抛物线解析式;‎ ‎(2)在平面直角坐标系xOy中存在一点P,使得以点A、B、C、P为顶点的四边形为菱形,理由为:根据OA,OB,OC的长,利用勾股定理求出BC与AC的长相等,只有当BP与AC平行且相等时,四边形ACBP为菱形,可得出BP的长,由OB的长确定出P的纵坐标,确定出P坐标,当点P在第二、三象限时,以点A、B、C、P为顶点的四边形只能是平行四边形,不是菱形;‎ ‎(3)利用待定系数法确定出直线PA解析式,当点M与点P、A不在同一直线上时,根据三角形的三边关系|PM﹣AM|<PA,当点M与点P、A在同一直线上时,|PM﹣AM|=PA,‎ 当点M与点P、A在同一直线上时,|PM﹣AM|的值最大,即点M为直线PA与抛物线的交点,联立直线AP与抛物线解析式,求出当|PM﹣AM|的最大值时M坐标,确定出|PM﹣AM|的最大值即可.‎ ‎【解答】解:(1)设抛物线的解析式为y=ax2+bx+c,‎ ‎∵A(1,0)、B(0,3)、C(﹣4,0),‎ ‎∴,‎ 解得:a=﹣,b=﹣,c=3,‎ ‎∴经过A、B、C三点的抛物线的解析式为y=﹣x2﹣x+3;‎ ‎(2)在平面直角坐标系xOy中存在一点P,使得以点A、B、C、P为顶点的四边形为菱形,理由为:‎ ‎∵OB=3,OC=4,OA=1,‎ ‎∴BC=AC=5,‎ 当BP平行且等于AC时,四边形ACBP为菱形,‎ ‎∴BP=AC=5,且点P到x轴的距离等于OB,‎ ‎∴点P的坐标为(5,3),‎ 当点P在第二、三象限时,以点A、B、C、P为顶点的四边形只能是平行四边形,不是菱形,‎ 则当点P的坐标为(5,3)时,以点A、B、C、P为顶点的四边形为菱形;‎ ‎(3)设直线PA的解析式为y=kx+b(k≠0),‎ ‎∵A(1,0),P(5,3),‎ ‎∴,‎ 解得:k=,b=﹣,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴直线PA的解析式为y=x﹣,‎ 当点M与点P、A不在同一直线上时,根据三角形的三边关系|PM﹣AM|<PA,‎ 当点M与点P、A在同一直线上时,|PM﹣AM|=PA,‎ ‎∴当点M与点P、A在同一直线上时,|PM﹣AM|的值最大,即点M为直线PA与抛物线的交点,‎ 解方程组,得或,‎ ‎∴点M的坐标为(1,0)或(﹣5,﹣)时,|PM﹣AM|的值最大,此时|PM﹣AM|的最大值为5.‎ ‎【点评】此题属于二次函数综合题,涉及的知识有:二次函数的性质,待定系数法确定抛物线解析式、一次函数解析式,菱形的判定,以及坐标与图形性质,熟练掌握待定系数法是解本题的关键..‎ ‎7.(2016·江西·12分)设抛物线的解析式为y=ax2,过点B1(1,0)作x轴的垂线,交抛物线于点A1(1,2);过点B2(,0)作x轴的垂线,交抛物线于点A2;…;过点Bn(()n﹣1,0)(n为正整数)作x轴的垂线,交抛物线于点An,连接AnBn+1,得Rt△AnBnBn+1.‎ ‎(1)求a的值;‎ ‎(2)直接写出线段AnBn,BnBn+1的长(用含n的式子表示);‎ ‎(3)在系列Rt△AnBnBn+1中,探究下列问题:‎ ‎①当n为何值时,Rt△AnBnBn+1是等腰直角三角形?‎ ‎②设1≤k<m≤n(k,m均为正整数),问:是否存在Rt△AkBkBk+1与Rt△AmBmBm+1相似?若存在,求出其相似比;若不存在,说明理由.‎ ‎【考点】二次函数综合题.‎ ‎【分析】(1)直接把点A1的坐标代入y=ax2求出a的值;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(2)由题意可知:A1B1是点A1的纵坐标:则A1B1=2×12=2;A2B2是点A2的纵坐标:则A2B2=2×()2=;…则AnBn=2x2=2×[()n﹣1]2=;‎ B1B2=1﹣=,B2B3=﹣==,…,BnBn+1=;‎ ‎(3)因为Rt△AkBkBk+1与Rt△AmBmBm+1是直角三角形,所以分两种情况讨论:根据(2)的结论代入所得的对应边的比列式,计算求出k与m的关系,并与1≤k<m≤n(k,m均为正整数)相结合,得出两种符合条件的值,分别代入两相似直角三角形计算相似比.‎ ‎【解答】解:(1)∵点A1(1,2)在抛物线的解析式为y=ax2上,‎ ‎∴a=2;‎ ‎(2)AnBn=2x2=2×[()n﹣1]2=,‎ BnBn+1=;‎ ‎(3)由Rt△AnBnBn+1是等腰直角三角形得AnBn=BnBn+1,则: =,‎ ‎2n﹣3=n,n=3,‎ ‎∴当n=3时,Rt△AnBnBn+1是等腰直角三角形,‎ ‎②依题意得,∠AkBkBk+1=∠AmBmBm+1=90°,‎ 有两种情况:i)当Rt△AkBkBk+1∽Rt△AmBmBm+1时,‎ ‎=, =, =,‎ 所以,k=m(舍去),‎ ii)当Rt△AkBkBk+1∽Rt△Bm+1BmAm时,‎ ‎=, =, =,‎ ‎∴k+m=6,‎ ‎∵1≤k<m≤n(k,m均为正整数),‎ ‎∴取或;‎ 当时,Rt△A1B1B2∽Rt△B6B‎5A5,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 相似比为: ==64,‎ 当时,Rt△A2B2B3∽Rt△B5B‎4A4,‎ 相似比为: ==8,‎ 所以:存在Rt△AkBkBk+1与Rt△AmBmBm+1相似,其相似比为64:1或8:1.‎ ‎8. (2016·辽宁丹东·10分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.‎ ‎(1)求证:∠BDC=∠A;‎ ‎(2)若CE=4,DE=2,求AD的长.‎ ‎【考点】切线的性质;相似三角形的判定与性质.‎ ‎【分析】(1)连接OD,由CD是⊙O切线,得到∠ODC=90°,根据AB为⊙O的直径,得到∠ADB=90°,等量代换得到∠BDC=∠ADO,根据等腰直角三角形的性质得到∠ADO=∠A,即可得到结论;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(2)根据垂直的定义得到∠E=∠ADB=90°,根据平行线的性质得到∠DCE=∠BDC,根据相似三角形的性质得到,解方程即可得到结论.‎ ‎【解答】(1)证明:连接OD,‎ ‎∵CD是⊙O切线,‎ ‎∴∠ODC=90°,‎ 即∠ODB+∠BDC=90°,‎ ‎∵AB为⊙O的直径,‎ ‎∴∠ADB=90°,‎ 即∠ODB+∠ADO=90°,‎ ‎∴∠BDC=∠ADO,‎ ‎∵OA=OD,‎ ‎∴∠ADO=∠A,‎ ‎∴∠BDC=∠A;‎ ‎(2)∵CE⊥AE,‎ ‎∴∠E=∠ADB=90°,‎ ‎∴DB∥EC,‎ ‎∴∠DCE=∠BDC,‎ ‎∵∠BDC=∠A,‎ ‎∴∠A=∠DCE,‎ ‎∵∠E=∠E,‎ ‎∴△AEC∽△CED,‎ ‎∴,‎ ‎∴EC2=DE•AE,‎ ‎∴16=2(2+AD),‎ ‎∴AD=6.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎9. (2016·辽宁丹东·12分)如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.‎ ‎(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;‎ ‎(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;‎ ‎(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.‎ ‎【考点】相似形综合题.‎ ‎【分析】(1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;‎ ‎(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;‎ ‎(3)PM=kPN,由已知条件可证明△BCD∽△ACE,所以可得BD=kAE,因为点P、M、N分别为AD、AB、DE的中点,所以PM=BD,PN=AE,进而可证明PM=kPN.‎ ‎【解答】解:‎ ‎(1)PM=PN,PM⊥PN,理由如下:‎ ‎∵△ACB和△ECD是等腰直角三角形,‎ ‎∴AC=BC,EC=CD,∠ACB=∠ECD=90°.‎ 在△ACE和△BCD中 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎,‎ ‎∴△ACE≌△BCD(SAS),‎ ‎∴AE=BD,∠EAC=∠CBD,‎ ‎∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,‎ ‎∴PM=BD,PN=AE,‎ ‎∴PM=PM,‎ ‎∵∠NPD=∠EAC,∠MPN=∠BDC,∠EAC+∠BDC=90°,‎ ‎∴∠MPA+∠NPC=90°,‎ ‎∴∠MPN=90°,‎ 即PM⊥PN;‎ ‎(2)∵△ACB和△ECD是等腰直角三角形,‎ ‎∴AC=BC,EC=CD,‎ ‎∠ACB=∠ECD=90°.‎ ‎∴∠ACB+∠BCE=∠ECD+∠BCE.‎ ‎∴∠ACE=∠BCD.‎ ‎∴△ACE≌△BCD.‎ ‎∴AE=BD,∠CAE=∠CBD. ‎ 又∵∠AOC=∠BOE,‎ ‎∠CAE=∠CBD,‎ ‎∴∠BHO=∠ACO=90°.‎ ‎∵点P、M、N分别为AD、AB、DE的中点,‎ ‎∴PM=BD,PM∥BD;‎ PN=AE,PN∥AE.‎ ‎∴PM=PN.‎ ‎∴∠MGE+∠BHA=180°.‎ ‎∴∠MGE=90°.‎ ‎∴∠MPN=90°.‎ ‎∴PM⊥PN. ‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(3)PM=kPN ‎ ‎∵△ACB和△ECD是直角三角形,‎ ‎∴∠ACB=∠ECD=90°.‎ ‎∴∠ACB+∠BCE=∠ECD+∠BCE.‎ ‎∴∠ACE=∠BCD.‎ ‎∵BC=kAC,CD=kCE,‎ ‎∴=k.‎ ‎∴△BCD∽△ACE.‎ ‎∴BD=kAE. ‎ ‎∵点P、M、N分别为AD、AB、DE的中点,‎ ‎∴PM=BD,PN=AE.‎ ‎∴PM=kPN.‎ ‎10. (2016·辽宁丹东·12分)如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.‎ ‎(1)求抛物线的表达式;‎ ‎(2)直接写出点C的坐标,并求出△ABC的面积;‎ ‎(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;‎ ‎(4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.‎ ‎【考点】二次函数综合题.‎ ‎【分析】(1)利用待定系数法求二次函数的表达式;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(2)根据二次函数的对称轴x=2写出点C的坐标为(3,3),根据面积公式求△ABC的面积;‎ ‎(3)因为点P是抛物线上一动点,且位于第四象限,设出点P的坐标(m,﹣m2+‎4m),利用差表示△ABP的面积,列式计算求出m的值,写出点P的坐标;‎ ‎(4)分别以点C、M、N为直角顶点分三类进行讨论,利用全等三角形和勾股定理求CM或CN的长,利用面积公式进行计算.‎ ‎【解答】解:(1)把点A(4,0),B(1,3)代入抛物线y=ax2+bx中,‎ 得 解得:,‎ ‎∴抛物线表达式为:y=﹣x2+4x;‎ ‎(2)点C的坐标为(3,3),‎ 又∵点B的坐标为(1,3),‎ ‎∴BC=2,‎ ‎∴S△ABC=×2×3=3; ‎ ‎(3)过P点作PD⊥BH交BH于点D,‎ 设点P(m,﹣m2+‎4m),‎ 根据题意,得:BH=AH=3,HD=m2﹣‎4m,PD=m﹣1,‎ ‎∴S△ABP=S△ABH+S四边形HAPD﹣S△BPD,‎ ‎6=×3×3+(3+m﹣1)(m2﹣‎4m)﹣(m﹣1)(3+m2﹣‎4m),‎ ‎∴‎3m2‎﹣‎15m=0,‎ m1=0(舍去),m2=5,‎ ‎∴点P坐标为(5,﹣5). ‎ ‎(4)以点C、M、N为顶点的三角形为等腰直角三角形时,分三类情况讨论:‎ ‎①以点M为直角顶点且M在x轴上方时,如图2,CM=MN,∠CMN=90°,‎ 则△CBM≌△MHN,‎ ‎∴BC=MH=2,BM=HN=3﹣2=1,‎ ‎∴M(1,2),N(2,0),‎ 由勾股定理得:MC==,‎ ‎∴S△CMN=××=;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎②以点M为直角顶点且M在x轴下方时,如图3,作辅助线,构建如图所示的两直角三角形:Rt△NEM和Rt△MDC,‎ 得Rt△NEM≌Rt△MDC,‎ ‎∴EM=CD=5,MD=ME=2,‎ 由勾股定理得:CM==,‎ ‎∴S△CMN=××=;‎ ‎③以点N为直角顶点且N在y轴左侧时,如图4,CN=MN,∠MNC=90°,作辅助线,‎ 同理得:CN==,‎ ‎∴S△CMN=××=17;‎ ‎④以点N为直角顶点且N在y轴右侧时,作辅助线,如图5,同理得:CN==,‎ ‎∴S△CMN=××=5;‎ ‎⑤以C为直角顶点时,不能构成满足条件的等腰直角三角形;‎ 综上所述:△CMN的面积为:或或17或5.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎ ‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎11. (2016·四川南充)已知正方形ABCD的边长为1,点P为正方形内一动点,若点M在AB上,且满足△PBC∽△PAM,延长BP交AD于点N,连结CM. ‎ ‎ ‎ ‎(1)如图一,若点M在线段AB上,求证:AP⊥BN;AM=AN; ‎ ‎(2)①如图二,在点P运动过程中,满足△PBC∽△PAM的点M在AB的延长线上时,AP⊥BN和AM=AN是否成立?(不需说明理由) ‎ ‎②是否存在满足条件的点P,使得PC=?请说明理由. ‎ ‎【分析】(1)由△PBC∽△PAM,推出∠PAM=∠PBC,由∠PBC+∠PBA=90°,推出∠PAM+∠PBA=90°即可证明AP⊥BN,由△PBC∽△PAM,推出==,由△BAP∽△BNA,推出=,得到=,由此即可证明. ‎ ‎(2)①结论仍然成立,证明方法类似(1).②这样的点P不存在.利用反证法证明.假设PC=,推出矛盾即可. ‎ ‎【解答】(1)证明:如图一中,∵四边形ABCD是正方形, ‎ ‎∴AB=BC=CD=AD,∠DAB=∠ABC=∠BCD=∠D=90°, ‎ ‎∵△PBC∽△PAM, ‎ ‎∴∠PAM=∠PBC, ==, ‎ ‎∴∠PBC+∠PBA=90°, ‎ ‎∴∠PAM+∠PBA=90°, ‎ ‎∴∠APB=90°, ‎ ‎∴AP⊥BN, ‎ ‎∵∠ABP=∠ABN,∠APB=∠BAN=90°, ‎ ‎∴△BAP∽△BNA, ‎ ‎∴=, ‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴=, ‎ ‎∵AB=BC, ‎ ‎∴AN=AM. ‎ ‎(2)解:①仍然成立,AP⊥BN和AM=AN. ‎ 理由如图二中,∵四边形ABCD是正方形, ‎ ‎∴AB=BC=CD=AD,∠DAB=∠ABC=∠BCD=∠D=90°, ‎ ‎∵△PBC∽△PAM, ‎ ‎∴∠PAM=∠PBC, ==, ‎ ‎∴∠PBC+∠PBA=90°, ‎ ‎∴∠PAM+∠PBA=90°, ‎ ‎∴∠APB=90°, ‎ ‎∴AP⊥BN, ‎ ‎∵∠ABP=∠ABN,∠APB=∠BAN=90°, ‎ ‎∴△BAP∽△BNA, ‎ ‎∴=, ‎ ‎∴=, ‎ ‎∵AB=BC, ‎ ‎∴AN=AM. ‎ ‎②这样的点P不存在. ‎ 理由:假设PC=, ‎ 如图三中,以点C为圆心为半径画圆,以AB为直径画圆, ‎ CO==>1+, ‎ ‎∴两个圆外离,∴∠APB<90°,这与AP⊥PB矛盾, ‎ ‎∴假设不可能成立, ‎ ‎∴满足PC=的点P不存在. ‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎ ‎ ‎ ‎ ‎ ‎ ‎【点评】本题考查相似三角形综合题、正方形的性质、圆的有关知识,解题的关键是熟练应用相似三角形性质解决问题,最后一个问题利用圆的位置关系解决问题,有一定难度,属于中考压轴题. ‎ ‎12.(2016·四川内江)(12分)如图15,已知抛物线C:y=x2-3x+m,直线l:y=kx(k>0),当k=1时,抛物线C与直线l只有一个公共点.‎ ‎(1)求m的值;‎ ‎(2)若直线l与抛物线C交于不同的两点A,B,直线l与直线l1:y=-3x+b交于点P,且+=,求b的值;‎ ‎(3)在(2)的条件下,设直线l1与y轴交于点Q,问:是否存在实数k使S△APQ=S△BPQ,若存在,求k的值;若不存在,说明理由.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 x y O l1‎ Q P B A l 图15‎ x y O l1‎ Q P B A l 答案图 C E D ‎[考点]二次函数与一元二次方程的关系,三角形的相似,推理论证的能力。‎ 解:(1)∵当k=1时,抛物线C与直线l只有一个公共点,‎ ‎∴方程组有且只有一组解. 2分 消去y,得x2-4x+m=0,所以此一元二次方程有两个相等的实数根.‎ ‎∴△=0,即(-4)2-‎4m=0.‎ ‎∴m=4. 4分 ‎(2)如图,分别过点A,P,B作y轴的垂线,垂足依次为C,D,E,‎ 则△OAC∽△OPD,∴=.‎ 同理,=.‎ ‎∵+=,∴+=2.‎ ‎∴+=2.‎ ‎∴+=,即=. 5分 解方程组得x=,即PD=. 6分 由方程组消去y,得x2-(k+3)x+4=0.‎ ‎∵AC,BE是以上一元二次方程的两根,‎ ‎∴AC+BE=k+3,AC·BE=4. 7分 ‎∴=.‎ 解得b=8. 8分 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(3)不存在.理由如下: 9分 假设存在,则当S△APQ=S△BPQ时有AP=PB,‎ 于是PD-AC=PE-PD,即AC+BE=2PD.‎ 由(2)可知AC+BE=k+3,PD=,‎ ‎∴k+3=2×,即(k+3)2=16.‎ 解得k=1(舍去k=-7). 11分 当k=1时,A,B两点重合,△QAB不存在.‎ ‎∴不存在实数k使S△APQ=S△BPQ. 12分 ‎13.(2016·四川攀枝花)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)‎ ‎(1)求抛物线的解析式;‎ ‎(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.‎ ‎(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.‎ ‎【考点】二次函数综合题.‎ ‎【分析】(1)由B、C两点的坐标,利用待定系数法可求得抛物线的解析式;‎ ‎(2)连接BC,则△ABC的面积是不变的,过P作PM∥y轴,交BC于点M,设出P点坐标,可表示出PM的长,可知当PM取最大值时△PBC的面积最大,利用二次函数的性质可求得P点的坐标及四边形ABPC的最大面积;‎ ‎(3)设直线m与y轴交于点N,交直线l于点G,由于∠AGP=∠GNC+∠GCN,所以当△AGB和△NGC相似时,必有∠AGB=∠CGB=90°,则可证得△AOC≌△NOB,可求得ON的长,可求出N点坐标,利用B、N两的点坐标可求得直线m的解析式.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【解答】解:‎ ‎(1)把B、C两点坐标代入抛物线解析式可得,解得,‎ ‎∴抛物线解析式为y=x2﹣2x﹣3;‎ ‎(2)如图1,连接BC,过Py轴的平行线,交BC于点M,交x轴于点H,‎ 在y=x2﹣2x﹣3中,令y=0可得0=x2﹣2x﹣3,解得x=﹣1或x=3,‎ ‎∴A点坐标为(﹣1,0),‎ ‎∴AB=3﹣(﹣1)=4,且OC=3,‎ ‎∴S△ABC=AB•OC=×4×3=6,‎ ‎∵B(3,0),C(0,﹣3),‎ ‎∴直线BC解析式为y=x﹣3,‎ 设P点坐标为(x,x2﹣2x﹣3),则M点坐标为(x,x﹣3),‎ ‎∵P点在第四限,‎ ‎∴PM=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x,‎ ‎∴S△PBC=PM•OH+PM•HB=PM•(OH+HB)=PM•OB=PM,‎ ‎∴当PM有最大值时,△PBC的面积最大,则四边形ABPC的面积最大,‎ ‎∵PM=﹣x2+3x=﹣(x﹣)2+,‎ ‎∴当x=时,PMmax=,则S△PBC=×=,‎ 此时P点坐标为(,﹣),S四边形ABPC=S△ABC+S△PBC=6+=,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 即当P点坐标为(,﹣)时,四边形ABPC的面积最大,最大面积为;‎ ‎(3)如图2,设直线m交y轴于点N,交直线l于点G,‎ 则∠AGP=∠GNC+∠GCN,‎ 当△AGB和△NGC相似时,必有∠AGB=∠CGB,‎ 又∠AGB+∠CGB=180°,‎ ‎∴∠AGB=∠CGB=90°,‎ ‎∴∠ACO=∠OBN,‎ 在Rt△AON和Rt△NOB中 ‎∴Rt△AON≌Rt△NOB(ASA),‎ ‎∴ON=OA=1,‎ ‎∴N点坐标为(0,﹣1),‎ 设直线m解析式为y=kx+d,把B、N两点坐标代入可得,解得,‎ ‎∴直线m解析式为y=x﹣1,‎ 即存在满足条件的直线m,其解析式为y=x﹣1.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【点评】本题为二次函数的综合应用,涉及知识点有待定系数法、二次函数的最值、相似三角形的判定、全等三角形的判定和性质等.在(2)中确定出PM的值最时四边形ABPC的面积最大是解题的关键,在(3)中确定出满足条件的直线m的位置是解题的关键.本题考查知识点较多,综合性较强,特别是第(2)问和第(3)问难度较大.‎ ‎14.(2016·四川宜宾)如图,已知二次函数y1=ax2+bx过(﹣2,4),(﹣4,4)两点.‎ ‎(1)求二次函数y1的解析式;‎ ‎(2)将y1沿x轴翻折,再向右平移2个单位,得到抛物线y2,直线y=m(m>0)交y2于M、N两点,求线段MN的长度(用含m的代数式表示);‎ ‎(3)在(2)的条件下,y1、y2交于A、B两点,如果直线y=m与y1、y2的图象形成的封闭曲线交于C、D两点(C在左侧),直线y=﹣m与y1、y2的图象形成的封闭曲线交于E、F两点(E在左侧),求证:四边形CEFD是平行四边形.‎ ‎【考点】二次函数综合题.‎ ‎【分析】(1)根据待定系数法即可解决问题.‎ ‎(2)先求出抛物线y2的顶点坐标,再求出其解析式,利用方程组以及根与系数关系即可求出MN.‎ ‎(3)用类似(2)的方法,分别求出CD、EF即可解决问题.‎ ‎【解答】解:(1)∵二次函数y1=ax2+bx过(﹣2,4),(﹣4,4)两点,‎ ‎∴解得,‎ ‎∴二次函数y1的解析式y1=﹣x2﹣3x.‎ ‎(2)∵y1=﹣(x+3)2+,‎ ‎∴顶点坐标(﹣3,),‎ ‎∵将y1沿x轴翻折,再向右平移2个单位,得到抛物线y2,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴抛物线y2的顶点坐标(﹣1,﹣),‎ ‎∴抛物线y2为y=(x+1)2﹣,‎ 由消去y整理得到x2+2x﹣8﹣‎2m=0,设x1,x2是它的两个根,‎ 则MN=|x1﹣x2|==,‎ ‎(3)由消去y整理得到x2+6x+‎2m=0,设两个根为x1,x2,‎ 则CD=|x1﹣x2|==,‎ 由消去y得到x2+2x﹣8+‎2m=0,设两个根为x1,x2,‎ 则EF=|x1﹣x2|==,‎ ‎∴EF=CD,EF∥CD,‎ ‎∴四边形CEFD是平行四边形.‎ ‎15.(2016·黑龙江龙东·10分)如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B在x轴的正半轴上.∠OAB=90°且OA=AB,OB,OC的长分别是一元二次方程x2﹣11x+30=0的两个根(OB>OC).‎ ‎(1)求点A和点B的坐标.‎ ‎(2)点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,直线l交边OA或边AB于点Q,交边OC或边BC于点R.设点P的横坐标为t,线段QR的长度为m.已知t=4时,直线l恰好过点C.当0<t<3时,求m关于t的函数关系式.‎ ‎(3)当m=3.5时,请直接写出点P的坐标.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【考点】四边形综合题.‎ ‎【分析】(1)先利用因式分解法解方程x2﹣11x+30=0可得到OB=6,OC=5,则B点坐标为(6,0),作AM⊥x轴于M,如图,利用等腰直角三角形的性质得OM=BM=AM=OB=3,于是可写出B点坐标;‎ ‎(2)作CN⊥x轴于N,如图,先利用勾股定理计算出CN得到C点坐标为(4,﹣3),再利用待定系数法分别求出直线OC的解析式为y=﹣x,直线OA的解析式为y=x,则根据一次函数图象上点的坐标特征得到Q(t,t),R(t,﹣t),所以QR=t﹣(﹣t),从而得到m关于t的函数关系式.‎ ‎(3)利用待定系数法求出直线AB的解析式为y=﹣x+6,直线BC的解析式为y=x﹣9,然后分类讨论:当0<t<3时,利用t=3.5可求出t得到P点坐标;‎ 当3≤t<4时,则Q(t,﹣t+6),R(t,﹣t),于是得到﹣t+6﹣(﹣t)=3.5,解得t=10,不满足t的范围舍去;当4≤t<6时,则Q(t,﹣t+6),R(t, t﹣9),所以﹣t+6﹣(t﹣9)=3.5,然后解方程求出t得到P点坐标.‎ ‎【解答】解:(1)∵方程x2﹣11x+30=0的解为x1=5,x2=6,‎ ‎∴OB=6,OC=5,‎ ‎∴B点坐标为(6,0),‎ 作AM⊥x轴于M,如图,‎ ‎∵∠OAB=90°且OA=AB,‎ ‎∴△AOB为等腰直角三角形,‎ ‎∴OM=BM=AM=OB=3,‎ ‎∴B点坐标为(3,3);‎ ‎(2)作CN⊥x轴于N,如图,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∵t=4时,直线l恰好过点C,‎ ‎∴ON=4,‎ 在Rt△OCN中,CN===3,‎ ‎∴C点坐标为(4,﹣3),‎ 设直线OC的解析式为y=kx,‎ 把C(4,﹣3)代入得4k=﹣3,解得k=﹣,‎ ‎∴直线OC的解析式为y=﹣x,‎ 设直线OA的解析式为y=ax,‎ 把A(3,3)代入得‎3a=3,解得a=1,‎ ‎∴直线OA的解析式为y=x,‎ ‎∵P(t,0)(0<t<3),‎ ‎∴Q(t,t),R(t,﹣t),‎ ‎∴QR=t﹣(﹣t)=t,‎ 即m=t(0<t<3);‎ ‎(3)设直线AB的解析式为y=px+q,‎ 把A(3,3),B(6,0)代入得,解得,‎ ‎∴直线AB的解析式为y=﹣x+6,‎ 同理可得直线BC的解析式为y=x﹣9,‎ 当0<t<3时,m=t,若m=3.5,则t=3.5,解得t=2,此时P点坐标为(2,0);‎ 当3≤t<4时,Q(t,﹣t+6),R(t,﹣t),‎ ‎∴m=﹣t+6﹣(﹣t)=﹣t+6,若m=3.5,则﹣t+6=3.5,解得t=10(不合题意舍去);‎ 当4≤t<6时,Q(t,﹣t+6),R(t, t﹣9),‎ ‎∴m=﹣t+6﹣(t﹣9)=﹣t+15,若m=3.5,则﹣t+15=3.5,解得t=,此时P点坐标为(,0),‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 综上所述,满足条件的P点坐标为(2,0)或(,0).‎ ‎16.(2016·黑龙江齐齐哈尔·8分)如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0)‎ ‎(1)求抛物线的解析式;‎ ‎(2)直接写出B、C两点的坐标;‎ ‎(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)‎ 注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)‎ ‎【考点】二次函数综合题.‎ ‎【分析】(1)利用对称轴方程可求得b,把点A的坐标代入可求得c,可求得抛物线的解析式;‎ ‎(2)根据A、B关于对称轴对称可求得点B的坐标,利用抛物线的解析式可求得B点坐标;‎ ‎(3)根据B、C坐标可求得BC长度,由条件可知BC为过O、B、C三点的圆的直径,可求得圆的面积.‎ ‎【解答】解:‎ ‎(1)由A(﹣1,0),对称轴为x=2,可得,解得,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴抛物线解析式为y=x2﹣4x﹣5;‎ ‎(2)由A点坐标为(﹣1,0),且对称轴方程为x=2,可知AB=6,‎ ‎∴OB=5,‎ ‎∴B点坐标为(5,0),‎ ‎∵y=x2﹣4x﹣5,‎ ‎∴C点坐标为(0,﹣5);‎ ‎(3)如图,连接BC,则△OBC是直角三角形,‎ ‎∴过O、B、C三点的圆的直径是线段BC的长度,‎ 在Rt△OBC中,OB=OC=5,‎ ‎∴BC=5,‎ ‎∴圆的半径为,‎ ‎∴圆的面积为π()2=π.‎ ‎17.(2016·黑龙江齐齐哈尔·12分)如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根 ‎(1)求线段BC的长度;‎ ‎(2)试问:直线AC与直线AB是否垂直?请说明理由;‎ ‎(3)若点D在直线AC上,且DB=DC,求点D的坐标;‎ ‎(4)在(3)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【考点】三角形综合题.‎ ‎【分析】(1)解出方程后,即可求出B、C两点的坐标,即可求出BC的长度;‎ ‎(2)由A、B、C三点坐标可知OA2=OC•OB,所以可证明△AOC∽△BOA,利用对应角相等即可求出∠CAB=90°;‎ ‎(3)容易求得直线AC的解析式,由DB=DC可知,点D在BC的垂直平分线上,所以D的纵坐标为1,将其代入直线AC的解析式即可求出D的坐标;‎ ‎(4)A、B、P三点为顶点的三角形是等腰三角形,可分为以下三种情况:①AB=AP;②AB=BP;③AP=BP;然后分别求出P的坐标即可.‎ ‎【解答】(1)∵x2﹣2x﹣3=0,‎ ‎∴x=3或x=﹣1,‎ ‎∴B(0,3),C(0,﹣1),‎ ‎∴BC=4,‎ ‎(2)∵A(﹣,0),B(0,3),C(0,﹣1),‎ ‎∴OA=,OB=3,OC=1,‎ ‎∴OA2=OB•OC,‎ ‎∵∠AOC=∠BOA=90°,‎ ‎∴△AOC∽△BOA,‎ ‎∴∠CAO=∠ABO,‎ ‎∴∠CAO+∠BAO=∠ABO+∠BAO=90°,‎ ‎∴∠BAC=90°,‎ ‎∴AC⊥AB;‎ ‎(3)设直线AC的解析式为y=kx+b,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 把A(﹣,0)和C(0,﹣1)代入y=kx+b,‎ ‎∴,‎ 解得:,‎ ‎∴直线AC的解析式为:y=﹣x﹣1,‎ ‎∵DB=DC,‎ ‎∴点D在线段BC的垂直平分线上,‎ ‎∴D的纵坐标为1,‎ ‎∴把y=1代入y=﹣x﹣1,‎ ‎∴x=﹣2,‎ ‎∴D的坐标为(﹣2,1),‎ ‎(4)设直线BD的解析式为:y=mx+n,直线BD与x轴交于点E,‎ 把B(0,3)和D(﹣2,1)代入y=mx+n,‎ ‎∴,‎ 解得,‎ ‎∴直线BD的解析式为:y=x+3,‎ 令y=0代入y=x+3,‎ ‎∴x=﹣3,‎ ‎∴E(﹣3,0),‎ ‎∴OE=3,‎ ‎∴tan∠BEC==,‎ ‎∴∠BEO=30°,‎ 同理可求得:∠ABO=30°,‎ ‎∴∠ABE=30°,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 当PA=AB时,如图1,‎ 此时,∠BEA=∠ABE=30°,‎ ‎∴EA=AB,‎ ‎∴P与E重合,‎ ‎∴P的坐标为(﹣3,0),‎ 当PA=PB时,如图2,‎ 此时,∠PAB=∠PBA=30°,‎ ‎∵∠ABE=∠ABO=30°,‎ ‎∴∠PAB=∠ABO,‎ ‎∴PA∥BC,‎ ‎∴∠PAO=90°,‎ ‎∴点P的横坐标为﹣,‎ 令x=﹣代入y=x+3,‎ ‎∴y=2,‎ ‎∴P(﹣,2),‎ 当PB=AB时,如图3,‎ ‎∴由勾股定理可求得:AB=2,EB=6,‎ 若点P在y轴左侧时,记此时点P为P1,‎ 过点P1作P‎1F⊥x轴于点F,‎ ‎∴P1B=AB=2,‎ ‎∴EP1=6﹣2,‎ ‎∴sin∠BEO=,‎ ‎∴FP1=3﹣,‎ 令y=3﹣代入y=x+3,‎ ‎∴x=﹣3,‎ ‎∴P1(﹣3,3﹣),‎ 若点P在y轴的右侧时,记此时点P为P2,‎ 过点P2作P‎2G⊥x轴于点G,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴P2B=AB=2,‎ ‎∴EP2=6+2,‎ ‎∴sin∠BEO=,‎ ‎∴GP2=3+,‎ 令y=3+代入y=x+3,‎ ‎∴x=3,‎ ‎∴P2(3,3+),‎ 综上所述,当A、B、P三点为顶点的三角形是等腰三角形时,点P的坐标为(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+).‎ ‎18.(2016·湖北黄石·8分)科技馆是少年儿童节假日游玩的乐园.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.‎ ‎(1)请写出图中曲线对应的函数解析式;‎ ‎(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?‎ ‎【分析】(1)构建待定系数法即可解决问题.‎ ‎(2)先求出馆内人数等于684人时的时间,再求出直到馆内人数减少到624人时的时间,即可解决问题.‎ ‎【解答】解(1)由图象可知,300=a×302,解得a=,‎ n=700,b×(30﹣90)2+700=300,解得b=﹣,‎ ‎∴y=,‎ ‎(2)由题意﹣(x﹣90)2+700=684,‎ 解得x=78,‎ ‎∴=15,‎ ‎∴15+30+(90﹣78)=57分钟 所以,馆外游客最多等待57分钟.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【点评】本题考查二次函数的应用、一元二次方程等知识,解题的关键是熟练掌握待定系数法,学会用方程的思想思考问题,属于中考常考题型.‎ ‎19.(2016·湖北黄石·12分)如图1所示,已知:点A(﹣2,﹣1)在双曲线C:y=上,直线l1:y=﹣x+2,直线l2与l1关于原点成中心对称,F1(2,2),F2(﹣2,﹣2)两点间的连线与曲线C在第一象限内的交点为B,P是曲线C上第一象限内异于B的一动点,过P作x轴平行线分别交l1,l2于M,N两点.‎ ‎(1)求双曲线C及直线l2的解析式;‎ ‎(2)求证:PF2﹣PF1=MN=4;‎ ‎(3)如图2所示,△PF‎1F2的内切圆与F‎1F2,PF1,PF2三边分别相切于点Q,R,S,求证:点Q与点B重合.(参考公式:在平面坐标系中,若有点A(x1,y1),B(x2,y2),则A、B两点间的距离公式为AB=.)‎ ‎【分析】(1)利用点A的坐标求出a的值,根据原点对称的性质找出直线l2上两点的坐标,求出解析式;‎ ‎(2)设P(x,),利用两点距离公式分别求出PF1、PF2、PM、PN的长,相减得出结论;‎ ‎(3)利用切线长定理得出,并由(2)的结论PF2﹣PF1=4得出PF2﹣PF1=QF2﹣QF1=4,再由两点间距离公式求出F‎1F2的长,计算出OQ和OB的长,得出点Q与点B重合.‎ ‎【解答】解:(1)解:把A(﹣2,﹣1)代入y=中得:‎ a=(﹣2)×(﹣1)=2,‎ ‎∴双曲线C:y=,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∵直线l1与x轴、y轴的交点分别是(2,0)、(0,2),它们关于原点的对称点分别是(﹣2,0)、(0,﹣2),‎ ‎∴l2:y=﹣x﹣2‎ ‎(2)设P(x,),‎ 由F1(2,2)得:PF12=(x﹣2)2+(﹣2)2=x2﹣4x+﹣+8,‎ ‎∴PF12=(x+﹣2)2,‎ ‎∵x+﹣2==>0,‎ ‎∴PF1=x+﹣2,‎ ‎∵PM∥x轴 ‎∴PM=PE+ME=PE+EF=x+﹣2,‎ ‎∴PM=PF1,‎ 同理,PF22=(x+2)2+(+2)2=(x++2)2,‎ ‎∴PF2=x++2, PN=x++2‎ 因此PF2=PN,‎ ‎∴PF2﹣PF1=PN﹣PM=MN=4,‎ ‎(3)△PF‎1F2的内切圆与F‎1F2,PF1,PF2三边分别相切于点Q,R,S,‎ ‎∴⇒PF2﹣PF1=QF2﹣QF1=4‎ 又∵QF2+QF1=F‎1F2=4,QF1=2﹣2,‎ ‎∴QO=2,‎ ‎∵B(,),‎ ‎∴OB=2=OQ,‎ 所以,点Q与点B重合.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【点评】此题主要考查了圆的综合应用以及反比例函数的性质等知识,将代数与几何融合在一起,注意函数中线段的长可以利用本题给出的两点距离公式解出,也可以利用勾股定理解出;解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.‎ ‎20.(2016·湖北荆门·14分)如图,直线y=﹣x+2与x轴,y轴分别交于点A,点B,两动点D,E分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F.‎ ‎(1)求点A,点B的坐标;‎ ‎(2)用含t的代数式分别表示EF和AF的长;‎ ‎(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.‎ ‎(4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由.‎ ‎【考点】二次函数综合题.‎ ‎【分析】(1)在直线y=﹣x+2中,分别令y=0和x=0,容易求得A、B两点坐标;‎ ‎(2)由OA、OB的长可求得∠ABO=30°,用t可表示出BE,EF,和BF的长,由勾股定理可求得AB的长,从而可用t表示出AF的长;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(3)利用菱形的性质可求得t的值,则可求得AF=AG的长,可得到=,可判定△AFG与△AGB相似;‎ ‎(4)若△AGF为直角三角形时,由条件可知只能是∠FAG=90°,又∠AFG=∠OAF=60°,由(2)可知AF=4﹣2t,EF=t,又由二次函数的对称性可得到EG=2OA=4,从而可求出FG,在Rt△AGF中,可得到关于t的方程,可求得t的值,进一步可求得E点坐标,利用待定系数法可求得抛物线的解析式.‎ ‎【解答】解:‎ ‎(1)在直线y=﹣x+2中,‎ 令y=0可得0=﹣x+2,解得x=2,‎ 令x=0可得y=2,‎ ‎∴A为(2,0),B为(0,2);‎ ‎(2)由(1)可知OA=2,OB=2,‎ ‎∴tan∠ABO==,‎ ‎∴∠ABO=30°,‎ ‎∵运动时间为t秒,‎ ‎∴BE=t,‎ ‎∵EF∥x轴,‎ ‎∴在Rt△BEF中,EF=BE•tan∠ABO=BE=t,BF=2EF=2t,‎ 在Rt△ABO中,OA=2,OB=2,‎ ‎∴AB=4,‎ ‎∴AF=4﹣2t;‎ ‎(3)相似.理由如下:‎ 当四边形ADEF为菱形时,则有EF=AF,‎ 即t=4﹣2t,解得t=,‎ ‎∴AF=4﹣2t=4﹣=,OE=OB﹣BE=2﹣×=,‎ 如图,过G作GH⊥x轴,交x轴于点H,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 则四边形OEGH为矩形,‎ ‎∴GH=OE=,‎ 又EG∥x轴,抛物线的顶点为A,‎ ‎∴OA=AH=2,‎ 在Rt△AGH中,由勾股定理可得AG2=GH2+AH2=()2+22=,‎ 又AF•AB=×4=,‎ ‎∴AF•AB=AG2,即=,且∠FAG=∠GAB,‎ ‎∴△AFG∽△AGB;‎ ‎(4)存在,‎ ‎∵EG∥x轴,‎ ‎∴∠GFA=∠BAO=60°,‎ 又G点不能在抛物线的对称轴上,‎ ‎∴∠FGA≠90°,‎ ‎∴当△AGF为直角三角形时,则有∠FAG=90°,‎ 又∠FGA=30°,‎ ‎∴FG=2AF,‎ ‎∵EF=t,EG=4,‎ ‎∴FG=4﹣t,且AF=4﹣2t,‎ ‎∴4﹣t=2(4﹣2t),‎ 解得t=,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 即当t的值为秒时,△AGF为直角三角形,此时OE=OB﹣BE=2﹣t=2﹣×=,‎ ‎∴E点坐标为(0,),‎ ‎∵抛物线的顶点为A,‎ ‎∴可设抛物线解析式为y=a(x﹣2)2,‎ 把E点坐标代入可得=‎4a,解得a=,‎ ‎∴抛物线解析式为y=(x﹣2)2,‎ 即y=x2﹣x+.‎ ‎21.(2016·湖北荆州·14分)阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.‎ 问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.‎ ‎(1)直接写出点D(m,n)所有的特征线;‎ ‎(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;‎ ‎(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?‎ ‎【分析】(1)根据特征线直接求出点D的特征线;‎ ‎(2)由点D的一条特征线和正方形的性质求出点D的坐标,从而求出抛物线解析式;‎ ‎(2)分平行于x轴和y轴两种情况,由折叠的性质计算即可.‎ ‎【解答】解:(1)∵点D(m,n),‎ ‎∴点D(m,n)的特征线是x=m,y=n,y=x+n﹣m,y=﹣x+m+n;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(2)点D有一条特征线是y=x+1,‎ ‎∴n﹣m=1,‎ ‎∴n=m+1‎ ‎∵抛物线解析式为,‎ ‎∴y=(x﹣m)2+m+1,‎ ‎∵四边形OABC是正方形,且D点为正方形的对称轴,D(m,n),‎ ‎∴B(‎2m,‎2m),‎ ‎∴(‎2m﹣m)2+n=‎2m,将n=m+1带入得到m=2,n=3;‎ ‎∴D(2,3),‎ ‎∴抛物线解析式为y=(x﹣2)2+3‎ ‎(3)如图,当点A′在平行于y轴的D点的特征线时,‎ 根据题意可得,D(2,3),‎ ‎∴OA′=OA=4,OM=2,‎ ‎∴∠A′OM=60°,‎ ‎∴∠A′OP=∠AOP=30°,‎ ‎∴MN==,‎ ‎∴抛物线需要向下平移的距离=3﹣=.‎ 乳头,当点A′在平行于x轴的D点的特征线时,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∵顶点落在OP上,‎ ‎∴A′与D重合,‎ ‎∴A′(2,3),‎ 设P(4,c)(c>0),‎ 由折叠有,PD=PA,‎ ‎∴=c,‎ ‎∴c=,‎ ‎∴P(4,)‎ ‎∴直线OP解析式为y=,‎ ‎∴N(2,),‎ ‎∴抛物线需要向下平移的距离=3﹣=,‎ 即:抛物线向下平移或距离,其顶点落在OP上.‎ ‎【点评】此题是二次函数综合题,主要考查了折叠的性质,正方形的性质,特征线的理解,解本题的关键是用正方形的性质求出点D的坐标.‎ ‎22.(2016·福建龙岩·13分)已知△ABC是等腰三角形,AB=AC.‎ ‎(1)特殊情形:如图1,当DE∥BC时,有DB = EC.(填“>”,“<”或“=”)‎ ‎(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.‎ ‎(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【考点】几何变换综合题.‎ ‎【分析】(1)由DE∥BC,得到,结合AB=AC,得到DB=EC;‎ ‎(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;‎ ‎(3)由旋转构造出△CPB≌△CEA,再用勾股定理计算出PE,然后用勾股定理逆定理判断出△PEA是直角三角形,在简单计算即可.‎ ‎【解答】解:(1)∵DE∥BC,‎ ‎∴,‎ ‎∵AB=AC,‎ ‎∴DB=EC,‎ 故答案为=,‎ ‎(2)成立.‎ 证明:由①易知AD=AE,‎ ‎∴由旋转性质可知∠DAB=∠EAC,‎ 在△DAB和△EAC中 得 ‎∴△DAB≌△EAC,‎ ‎∴DB=CE,‎ ‎(3)如图,‎ 将△CPB绕点C旋转90°得△CEA,连接PE,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴△CPB≌△CEA,‎ ‎∴CE=CP=2,AE=BP=1,∠PCE=90°,‎ ‎∴∠CEP=∠CPE=45°,‎ 在Rt△PCE中,由勾股定理可得,PE=2,‎ 在△PEA中,PE2=(2)2=8,AE2=12=1,PA2=32=9,‎ ‎∵PE2+AE2=AP2,‎ ‎∴△PEA是直角三角形 ‎∴∠PEA=90°,‎ ‎∴∠CEA=135°,‎ 又∵△CPB≌△CEA ‎∴∠BPC=∠CEA=135°.‎ ‎23.(2016·福建龙岩·14分)已知抛物线y=﹣+bx+c与y轴交于点C,与x轴的两个交点分别为A(﹣4,0),B(1,0).‎ ‎(1)求抛物线的解析式;‎ ‎(2)已知点P在抛物线上,连接PC,PB,若△PBC是以BC为直角边的直角三角形,求点P的坐标;‎ ‎(4)已知点E在x轴上,点F在抛物线上,是否存在以A,C,E,F为顶点的四边形是平行四边形?若存在,请直接写出点E的坐标;若不存在,请说明理由.‎ ‎【考点】二次函数综合题.‎ ‎【分析】(1)因为抛物线经过点A(﹣4,0),B(1,0),所以可以设抛物线为y=﹣(x+4)(x﹣1),展开即可解决问题.‎ ‎(2)先证明∠ACB=90°,点A就是所求的点P,求出直线AC解析式,再求出过点B平行AC的直线的解析式,利用方程组即可解决问题.‎ ‎(3)分AC为平行四边形的边,AC为平行四边形的对角线两种切线讨论即可解决问题.‎ ‎【解答】解:(1)抛物线的解析式为y=﹣(x+4)(x﹣1),即y=﹣x2﹣x+2;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(2)存在.‎ 当x=0,y═﹣x2﹣x+2=2,则C(0,2),‎ ‎∴OC=2,‎ ‎∵A(﹣4,0),B(1,0),‎ ‎∴OA=4,OB=1,AB=5,‎ 当∠PCB=90°时,‎ ‎∵AC2=42+22=20,BC2=22+12=5,AB2=52=25‎ ‎∴AC2+BC2=AB2‎ ‎∴△ACB是直角三角形,∠ACB=90°,‎ ‎∴当点P与点A重合时,△PBC是以BC为直角边的直角三角形,此时P点坐标为(﹣4,0);‎ 当∠PBC=90°时,PB∥AC,如图1,‎ 设直线AC的解析式为y=mx+n,‎ 把A(﹣4,0),C(0,2)代入得,解得,‎ ‎∴直线AC的解析式为y=x+2,‎ ‎∵BP∥AC,‎ ‎∴直线BP的解析式为y=x+p,‎ 把B(1,0)代入得+p=0,解得p=﹣,‎ ‎∴直线BP的解析式为y=x﹣,‎ 解方程组得或,此时P点坐标为(﹣5,﹣3);‎ 综上所述,满足条件的P点坐标为(﹣4,0),P2(﹣5,﹣3);‎ ‎(3)存在点E,设点E坐标为(m,0),F(n,﹣n2﹣n+2)‎ ‎①当AC为边,CF1∥AE1,易知CF1=3,此时E1坐标(﹣7,0),‎ ‎②当AC为边时,AC∥EF,易知点F纵坐标为﹣2,‎ ‎∴﹣n2﹣n+2=﹣2,解得n=,得到F2(,﹣2),F3(,﹣2),‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 根据中点坐标公式得到: =或=,‎ 解得m=或,‎ 此时E2(,0),E3(,0),‎ ‎③当AC为对角线时,AE4=CF1=3,此时E4(﹣1,0),‎ 综上所述满足条件的点E为(﹣7,0)或(﹣1,0)或(,﹣2)或(,﹣2).‎ ‎ ‎ ‎24.(2016·广西百色·12分)正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.‎ ‎(1)建立适当的平面直角坐标系,‎ ‎①直接写出O、P、A三点坐标;‎ ‎②求抛物线L的解析式;‎ ‎(2)求△OAE与△OCE面积之和的最大值.‎ ‎【考点】二次函数综合题.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【分析】(1)以O点为原点,线段OA所在的直线为x轴,线段OC所在的直线为y轴建立直角坐标系.①根据正方形的边长结合正方形的性质即可得出点O、P、A三点的坐标;②设抛物线L的解析式为y=ax2+bx+c,结合点O、P、A的坐标利用待定系数法即可求出抛物线的解析式;‎ ‎(2)由点E为正方形内的抛物线上的动点,设出点E的坐标,结合三角形的面积公式找出S△OAE+SOCE关于m的函数解析式,根据二次函数的性质即可得出结论.‎ ‎【解答】解:(1)以O点为原点,线段OA所在的直线为x轴,线段OC所在的直线为y轴建立直角坐标系,如图所示.‎ ‎①∵正方形OABC的边长为4,对角线相交于点P,‎ ‎∴点O的坐标为(0,0),点A的坐标为(4,0),点P的坐标为(2,2).‎ ‎②设抛物线L的解析式为y=ax2+bx+c,‎ ‎∵抛物线L经过O、P、A三点,‎ ‎∴有,‎ 解得:,‎ ‎∴抛物线L的解析式为y=﹣+2x.‎ ‎(2)∵点E是正方形内的抛物线上的动点,‎ ‎∴设点E的坐标为(m,﹣+‎2m)(0<m<4),‎ ‎∴S△OAE+SOCE=OA•yE+OC•xE=﹣m2+‎4m+‎2m=﹣(m﹣3)2+9,‎ ‎∴当m=3时,△OAE与△OCE面积之和最大,最大值为9.‎ ‎ ‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎25.(2016·广西桂林·10分)如图,在四边形ABCD中,AB=6,BC=8,CD=24,AD=26,∠B=90°,以AD为直径作圆O,过点D作DE∥AB交圆O于点E ‎(1)证明点C在圆O上;‎ ‎(2)求tan∠CDE的值;‎ ‎(3)求圆心O到弦ED的距离.‎ ‎【考点】实数的运算.‎ ‎【分析】(1)如图1,连结CO.先由勾股定理求出AC=10,再利用勾股定理的逆定理证明△ACD是直角三角形,∠C=90°,那么OC为Rt△ACD斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半得出OC=AD=r,即点C在圆O上;‎ ‎(2)如图2,延长BC、DE交于点F,∠BFD=90°.根据同角的余角相等得出∠CDE=∠ACB.在Rt△ABC中,利用正切函数定义求出tan∠ACB==,则tan∠CDE=tan∠ACB=;‎ ‎(3)如图3,连结AE,作OG⊥ED于点G,则OG∥AE,且OG=AE.易证△ABC∽△CFD,根据相似三角形对应边成比例求出CF=,那么BF=BC+CF=.再证明四边形ABFE是矩形,得出AE=BF=,所以OG=AE=.‎ ‎【解答】(1)证明:如图1,连结CO.‎ ‎∵AB=6,BC=8,∠B=90°,‎ ‎∴AC=10.‎ 又∵CD=24,AD=26,102+242=262,‎ ‎∴△ACD是直角三角形,∠C=90°.‎ ‎∵AD为⊙O的直径,‎ ‎∴AO=OD,OC为Rt△ACD斜边上的中线,‎ ‎∴OC=AD=r,‎ ‎∴点C在圆O上;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(2)解:如图2,延长BC、DE交于点F,∠BFD=90°.‎ ‎∵∠BFD=90°,‎ ‎∴∠CDE+∠FCD=90°,‎ 又∵∠ACD=90°,‎ ‎∴∠ACB+∠FCD=90°,‎ ‎∴∠CDE=∠ACB.‎ 在Rt△ABC中,tan∠ACB==,‎ ‎∴tan∠CDE=tan∠ACB=;‎ ‎(3)解:如图3,连结AE,作OG⊥ED于点G,则OG∥AE,且OG=AE.‎ 易证△ABC∽△CFD,‎ ‎∴=,即=,‎ ‎∴CF=,‎ ‎∴BF=BC+CF=8+=.‎ ‎∵∠B=∠F=∠AED=90°,‎ ‎∴四边形ABFE是矩形,‎ ‎∴AE=BF=,‎ ‎∴OG=AE=,‎ 即圆心O到弦ED的距离为.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎26.(2016·广西桂林·12分)如图1,已知开口向下的抛物线y1=ax2﹣2ax+1过点A(m,1),与y轴交于点C,顶点为B,将抛物线y1绕点C旋转180°后得到抛物线y2,点A,B的对应点分别为点D,E.‎ ‎(1)直接写出点A,C,D的坐标;‎ ‎(2)当四边形ABCD是矩形时,求a的值及抛物线y2的解析式;‎ ‎(3)在(2)的条件下,连接DC,线段DC上的动点P从点D出发,以每秒1个单位长度的速度运动到点C停止,在点P运动的过程中,过点P作直线l⊥x轴,将矩形ABDE沿直线l折叠,设矩形折叠后相互重合部分面积为S平方单位,点P的运动时间为t秒,求S与t的函数关系.‎ ‎【考点】二次函数综合题.‎ ‎【分析】(1)直接将点A的坐标代入y1=ax2﹣2ax+1得出m的值,因为由图象可知点A在第一象限,所以m≠0,则m=2,写出A,C的坐标,点D与点A关于点C对称,由此写出点D的坐标;‎ ‎(2)根据顶点坐标公式得出抛物线y1的顶点B的坐标,再由矩形对角线相等且平分得:BC=CD,在直角△BMC中,由勾股定理列方程求出a的值得出抛物线y1的解析式,由旋转的性质得出抛物线y2的解析式;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(3)分两种情况讨论:①当0≤t≤1时,S=S△GHD=S△PDH+S△PDG,作辅助线构建直角三角形,求出PG和PH,利用面积公式计算;②当1<t≤2时,S=S直角三角形+S矩形﹣S不重合,这里不重合的图形就是△GE′F,利用30°角和60°角的直角三角形的性质进行计算得出结论.‎ ‎【解答】解:(1)由题意得:‎ 将A(m,1)代入y1=ax2﹣2ax+1得:am2﹣2am+1=1,‎ 解得:m1=2,m2=0(舍),‎ ‎∴A(2,1)、C(0,1)、D(﹣2,1);‎ ‎(2)如图1,由(1)知:B(1,1﹣a),过点B作BM⊥y轴,‎ 若四边形ABDE为矩形,则BC=CD,‎ ‎∴BM2+CM2=BC2=CD2,‎ ‎∴12+(﹣a)2=22,‎ ‎∴a=,‎ ‎∵y1抛物线开口向下,‎ ‎∴a=﹣,‎ ‎∵y2由y1绕点C旋转180°得到,则顶点E(﹣1,1﹣),‎ ‎∴设y2=a(x+1)2+1﹣,则a=,‎ ‎∴y2=x2+2x+1;‎ ‎(3)如图1,当0≤t≤1时,则DP=t,构建直角△BQD,‎ 得BQ=,DQ=3,则BD=2,‎ ‎∴∠BDQ=30°,‎ ‎∴PH=,PG=t,‎ ‎∴S=(PE+PF)×DP=t2,‎ 如图2,当1<t≤2时,EG=E′G=(t﹣1),E′F=2(t﹣1),‎ S不重合=(t﹣1)2,‎ S=S1+S2﹣S不重合=+(t﹣1)﹣(t﹣1)2,‎ ‎=﹣;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 综上所述:S=t2(0≤t≤1)或S=﹣(1<t≤2).‎ ‎27.(2016·贵州安顺·12分)如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.‎ ‎(1)判断直线CE与⊙O的位置关系,并证明你的结论;‎ ‎(2)若tan∠ACB=,BC=2,求⊙O的半径.‎ ‎【分析】(1)连接OE.欲证直线CE与⊙O相切,只需证明∠CEO=90°,即OE⊥CE即可;‎ ‎(2)在直角三角形ABC中,根据三角函数的定义可以求得AB=,然后根据勾股定理求得AC=,同理知DE=1;‎ 方法一、在Rt△COE中,利用勾股定理可以求得CO2=OE2+CE2,即=r2+3,从而易得r的值;‎ 方法二、过点O作OM⊥AE于点M,在Rt△AMO中,根据三角函数的定义可以求得r的值.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【解答】解:(1)直线CE与⊙O相切.…(1分)‎ 理由如下:‎ ‎∵四边形ABCD是矩形,‎ ‎∴BC∥AD,∠ACB=∠DAC;‎ 又∵∠ACB=∠DCE,‎ ‎∴∠DAC=∠DCE;‎ 连接OE,则∠DAC=∠AEO=∠DCE;‎ ‎∵∠DCE+∠DEC=90°‎ ‎∴∠AE0+∠DEC=90°‎ ‎∴∠OEC=90°,即OE⊥CE.‎ 又OE是⊙O的半径,‎ ‎∴直线CE与⊙O相切.…(5分)‎ ‎(2)∵tan∠ACB==,BC=2,‎ ‎∴AB=BC•tan∠ACB=,‎ ‎∴AC=;‎ 又∵∠ACB=∠DCE,‎ ‎∴tan∠DCE=tan∠ACB=,‎ ‎∴DE=DC•tan∠DCE=1;‎ 方法一:在Rt△CDE中,CE==,‎ 连接OE,设⊙O的半径为r,则在Rt△COE中,CO2=OE2+CE2,即=r2+3 ‎ 解得:r=‎ 方法二:AE=AD﹣DE=1,过点O作OM⊥AE于点M,则AM=AE=‎ 在Rt△AMO中,OA==÷=…(9分)‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【点评】本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算线段的长.‎ ‎28.(2016·贵州安顺·14分)如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.‎ ‎(1)求抛物线的解析式;‎ ‎(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;‎ ‎(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.‎ ‎【分析】(1)设抛物线的解析式为y=ax2+bx+c(a≠0),再把A(﹣1,0),B(5,0),C(0,)三点代入求出a、b、c的值即可;‎ ‎(2)因为点A关于对称轴对称的点B的坐标为(5,0),连接BC交对称轴直线于点P,求出P点坐标即可;‎ ‎(3)分点N在x轴下方或上方两种情况进行讨论.‎ ‎【解答】解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),‎ ‎∵A(﹣1,0),B(5,0),C(0,)三点在抛物线上,‎ ‎∴,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 解得.‎ ‎∴抛物线的解析式为:y=x2﹣2x﹣;‎ ‎(2)∵抛物线的解析式为:y=x2﹣2x﹣,‎ ‎∴其对称轴为直线x=﹣=﹣=2,‎ 连接BC,如图1所示,‎ ‎∵B(5,0),C(0,﹣),‎ ‎∴设直线BC的解析式为y=kx+b(k≠0),‎ ‎∴,‎ 解得,‎ ‎∴直线BC的解析式为y=x﹣,‎ 当x=2时,y=1﹣=﹣,‎ ‎∴P(2,﹣);‎ ‎(3)存在.‎ 如图2所示,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎①当点N在x轴下方时,‎ ‎∵抛物线的对称轴为直线x=2,C(0,﹣),‎ ‎∴N1(4,﹣);‎ ‎②当点N在x轴上方时,‎ 如图,过点N2作N2D⊥x轴于点D,‎ 在△AN2D与△M2CO中,‎ ‎∴△AN2D≌△M2CO(ASA),‎ ‎∴N2D=OC=,即N2点的纵坐标为.‎ ‎∴x2﹣2x﹣=,‎ 解得x=2+或x=2﹣,‎ ‎∴N2(2+,),N3(2﹣,).‎ 综上所述,符合条件的点N的坐标为(4,﹣),(2+,)或(2﹣,).‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【点评】本题考查的是二次函数综合题,涉及到用待定系数法求一次函数与二次函数的解析式、平行四边的判定与性质、全等三角形等知识,在解答(3)时要注意进行分类讨论.‎ ‎29.(2016·黑龙江哈尔滨·10分)已知:△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H.‎ ‎(1)如图1,当圆心O在AB边上时,求证:AC=2OH;‎ ‎(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;‎ ‎(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=5,BN=3,tan∠ABC=,求BF的长.‎ ‎【考点】圆的综合题.‎ ‎【分析】(1)OD⊥BC可知点H是BC的中点,又中位线的性质可得AC=2OH;‎ ‎(2)由垂径定理可知:,所以∠BAD=∠CAD,由因为∠ABC=∠ADC,所以∠ACD=∠APB;‎ ‎(3)由∠ACD﹣∠ABD=2∠BDN可知∠AND=90°,由tan∠ABC=可知NQ和BQ的长度,再由BF⊥OE和OD⊥BC可知∠GBN=∠ABC,所以BG=BQ,连接AO并延长交⊙O于点I,连接IC后利用圆周角定理可求得IC和AI的长度,设QH=x,利用勾股定理可求出QH和HD的长度,利用垂径定理可求得ED的长度,最后利用tan∠OED=即可求得RG的长度,最后由垂径定理可求得BF的长度.‎ ‎【解答】解:(1)∵OD⊥BC,‎ ‎∴由垂径定理可知:点H是BC的中点,‎ ‎∵点O是AB的中点,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴OH是△ABC的中位线,‎ ‎∴AC=2OH;‎ ‎(2)∵OD⊥BC,‎ ‎∴由垂径定理可知:,‎ ‎∴∠BAD=∠CAD,‎ ‎∵,‎ ‎∴∠ABC=∠ADC,‎ ‎∴180°﹣∠BAD﹣∠ABC=180°﹣∠CAD﹣∠ADC,‎ ‎∴∠ACD=∠APB,‎ ‎(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,‎ ‎∵∠ACD﹣∠ABD=2∠BDN,‎ ‎∴∠ACD﹣∠BDN=∠ABD+∠BDN,‎ ‎∵∠ABD+∠BDN=∠AND,‎ ‎∴∠ACD﹣∠BDN=∠AND,‎ ‎∵∠ACD+∠ABD=180°,‎ ‎∴∠ABD+∠BDN=180°﹣∠AND,‎ ‎∴∠AND=180°﹣∠AND,‎ ‎∴∠AND=90°,‎ ‎∵tan∠ABC=,BN=3,‎ ‎∴NQ=,‎ ‎∴由勾股定理可求得:BQ=,‎ ‎∵∠BNQ=∠QHD=90°,‎ ‎∴∠ABC=∠QDH,‎ ‎∵OE=OD,‎ ‎∴∠OED=∠QDH,‎ ‎∵∠ERG=90°,‎ ‎∴∠OED=∠GBN,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴∠GBN=∠ABC,‎ ‎∵AB⊥ED,‎ ‎∴BG=BQ=,GN=NQ=,‎ ‎∵AI是⊙O直径,‎ ‎∴∠ACI=90°,‎ ‎∵tan∠AIC=tan∠ABC=,‎ ‎∴=,‎ ‎∴IC=10,‎ ‎∴由勾股定理可求得:AI=25,‎ 连接OB,‎ 设QH=x,‎ ‎∵tan∠ABC=tan∠ODE=,‎ ‎∴,‎ ‎∴HD=2x,‎ ‎∴OH=OD﹣HD=﹣2x,‎ BH=BQ+QH=+x,‎ 由勾股定理可得:OB2=BH2+OH2,‎ ‎∴()2=(+x)2+(﹣2x)2,‎ 解得:x=或x=,‎ 当QH=时,‎ ‎∴QD=QH=,‎ ‎∴ND=QD+NQ=6,‎ ‎∴MN=3,MD=15‎ ‎∵MD,‎ ‎∴QH=不符合题意,舍去,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 当QH=时,‎ ‎∴QD=QH=‎ ‎∴ND=NQ+QD=4,‎ 由垂径定理可求得:ED=10,‎ ‎∴GD=GN+ND=‎ ‎∴EG=ED﹣GD=,‎ ‎∵tan∠OED=,‎ ‎∴,‎ ‎∴EG=RG,‎ ‎∴RG=,‎ ‎∴BR=RG+BG=12‎ ‎∴由垂径定理可知:BF=2BR=24.‎ ‎30.(2016·黑龙江哈尔滨·10分)如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.‎ ‎(1)求抛物线的解析式;‎ ‎(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);‎ ‎(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【考点】二次函数综合题.‎ ‎【分析】(1)利用待定系数法求二次函数的解析式;‎ ‎(2)如图1,作辅助线构建两个直角三角形,利用斜边PE=EF和两角相等证两直角三角形全等,得PA′=EB′,则d=FM=OE﹣EB′代入列式可得结论,但要注意PA′=﹣t;‎ ‎(3)如图2,根据直线EH的解析式表示出点F的坐标和H的坐标,发现点P和点H的纵坐标相等,则PH与x轴平行,根据平行线截线段成比例定理可得G也是PQ的中点,由此表示出点G的坐标并列式,求出t的值并取舍,计算出点F的坐标.‎ ‎【解答】解:(1)把A(﹣4,0),B(0,4)代入y=ax2+2xa+c得,解得,‎ 所以抛物线解析式为y=﹣x2﹣x+4;‎ ‎(2)如图1,分别过P、F向y轴作垂线,垂足分别为A′、B′,过P作PN⊥x轴,垂足为N,‎ 由直线DE的解析式为:y=x+5,则E(0,5),‎ ‎∴OE=5,‎ ‎∵∠PEO+∠OEF=90°,∠PEO+∠EPA′=90°,‎ ‎∴∠EPA′=∠OEF,‎ ‎∵PE=EF,∠EA′P=∠EB′F=90°,‎ ‎∴△PEA′≌△EFB′,‎ ‎∴PA′=EB′=﹣t,‎ 则d=FM=OB′=OE﹣EB′=5﹣(﹣t)=5+;‎ ‎(3)如图2,由直线DE的解析式为:y=x+5,‎ ‎∵EH⊥ED,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴直线EH的解析式为:y=﹣x+5,‎ ‎∴FB′=A′E=5﹣(﹣t2﹣t+4)=t2+t+1,‎ ‎∴F(t2+t+1,5+t),‎ ‎∴点H的横坐标为: t2+t+1,‎ y=﹣t2﹣t﹣1+5=﹣t2﹣t+4,‎ ‎∴H(t2+t+1,﹣t2﹣t+4),‎ ‎∵G是DH的中点,‎ ‎∴G(,),‎ ‎∴G(t2+t﹣2,﹣t2﹣t+2),‎ ‎∴PH∥x轴,‎ ‎∵DG=GH,‎ ‎∴PG=GQ,‎ ‎∴=t2+t﹣2,‎ t=,‎ ‎∵P在第二象限,‎ ‎∴t<0,‎ ‎∴t=﹣,‎ ‎∴F(4﹣,5﹣).‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎ ‎ ‎31.(2016河南)(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.‎ 填空:当点A位于 CB的延长线上 时,线段AC的长取得最大值,且最大值为 a+b (用含a,b的式子表示)‎ ‎(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.‎ ‎①请找出图中与BE相等的线段,并说明理由;‎ ‎②直接写出线段BE长的最大值.‎ ‎(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.‎ ‎【考点】三角形综合题.‎ ‎【分析】(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;‎ ‎(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD≌△EAB,根据全等三角形的性质得到CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+3;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可得到结论.‎ ‎【解答】解:(1)∵点A为线段BC外一动点,且BC=a,AB=b,‎ ‎∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,‎ 故答案为:CB的延长线上,a+b;‎ ‎(2)①CD=BE,‎ 理由:∵△ABD与△ACE是等边三角形,‎ ‎∴AD=AB,AC=AE,∠BAD=∠CAE=60°,‎ ‎∴∠BAD+∠BAC=∠CAE+∠BAC,‎ 即∠CAD=∠EAB,‎ 在△CAD与△EAB中,,‎ ‎∴△CAD≌△EAB,‎ ‎∴CD=BE;‎ ‎②∵线段BE长的最大值=线段CD的最大值,‎ 由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,‎ ‎∴最大值为BD+BC=AB+BC=4;‎ ‎(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,‎ 则△APN是等腰直角三角形,‎ ‎∴PN=PA=2,BN=AM,‎ ‎∵A的坐标为(2,0),点B的坐标为(5,0),‎ ‎∴OA=2,OB=5,‎ ‎∴AB=3,‎ ‎∴线段AM长的最大值=线段BN长的最大值,‎ ‎∴当N在线段BA的延长线时,线段BN取得最大值,‎ 最大值=AB+AN,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∵AN=AP=2,‎ ‎∴最大值为2+3;‎ 如图2,过P作PE⊥x轴于E,‎ ‎∵△APN是等腰直角三角形,‎ ‎∴PE=AE=,‎ ‎∴OE=BO﹣﹣3=2﹣,‎ ‎∴P(2﹣,).‎ ‎【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.‎ ‎32.(2016·山东省德州市·4分)已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.‎ ‎(1)求这个抛物线的解析式;‎ ‎(2)设(1)中的抛物线与x轴的另一个交点为抛物线的顶点为D,试求出点C,D的坐标,并判断△BCD的形状;‎ ‎(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【考点】二次函数综合题.‎ ‎【分析】(1)先解一元二次方程,然后用待定系数法求出抛物线解析式;‎ ‎(2)先解方程求出抛物线与x轴的交点,再判断出△BOC和△BED都是等腰直角三角形,从而得到结论;‎ ‎(3)先求出QF=1,再分两种情况,当点P在点M上方和下方,分别计算即可.‎ ‎【解答】解(1)∵x2+4x+3=0,‎ ‎∴x1=﹣1,x2=﹣3,‎ ‎∵m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,‎ ‎∴m=﹣1,n=﹣3,‎ ‎∵抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),‎ ‎∴,‎ ‎∴,‎ ‎∴抛物线解析式为y=x2﹣2x﹣3,‎ ‎(2)令y=0,则x2﹣2x﹣3=0,‎ ‎∴x1=﹣1,x2=3,‎ ‎∴C(3,0),‎ ‎∵y=x2﹣2x﹣3=(x﹣1)2﹣4,‎ ‎∴顶点坐标D(1,﹣4),‎ 过点D作DE⊥y轴,‎ ‎∵OB=OC=3,‎ ‎∴BE=DE=1,‎ ‎∴△BOC和△BED都是等腰直角三角形,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴∠OBC=∠DBE=45°,‎ ‎∴∠CBD=90°,‎ ‎∴△BCD是直角三角形;‎ ‎(3)如图,‎ ‎∵B(0,﹣3),C(3,0),‎ ‎∴直线BC解析式为y=x﹣3,‎ ‎∵点P的横坐标为t,PM⊥x轴,‎ ‎∴点M的横坐标为t,‎ ‎∵点P在直线BC上,点M在抛物线上,‎ ‎∴P(t,t﹣3),M(t,t2﹣2t﹣3),‎ 过点Q作QF⊥PM,‎ ‎∴△PQF是等腰直角三角形,‎ ‎∵PQ=,‎ ‎∴QF=1,‎ 当点P在点M上方时,即0<t<3时,‎ PM=t﹣3﹣(t2﹣2t﹣3)=﹣t2+3t,‎ ‎∴S=PM×QF=(﹣t2﹣3t)=﹣t2+t,‎ 如图3,当点P在点M下方时,即t<0或t>3时,‎ PM=t2﹣2t﹣3﹣(t﹣3),‎ ‎∴S=PM×QF=(t2﹣3t)=t2﹣t ‎【点评】此题是二次函数综合题,主要考查了一元二次方程的解法,待定系数法求函数解析式,等腰直角三角形的性质和判定,解本题的关键是判定△BCD是直角三角形.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎33.(2016·山东省滨州市·14分)如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C ‎(1)求点A,B,C的坐标;‎ ‎(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;‎ ‎(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.‎ ‎【考点】二次函数综合题.‎ ‎【专题】压轴题;函数及其图象.‎ ‎【分析】(1)分别令y=0,x=0,即可解决问题.‎ ‎(2)由图象可知AB只能为平行四边形的边,易知点E坐标(﹣7,﹣)或(5,﹣),由此不难解决问题.‎ ‎(3)分A、C、M为顶点三种情形讨论,分别求解即可解决问题.‎ ‎【解答】解:(1)令y=0得﹣x2﹣x+2=0,‎ ‎∴x2+2x﹣8=0,‎ x=﹣4或2,‎ ‎∴点A坐标(2,0),点B坐标(﹣4,0),‎ 令x=0,得y=2,∴点C坐标(0,2).‎ ‎(2)由图象可知AB只能为平行四边形的边,‎ ‎∵AB=EF=6,对称轴x=﹣1,‎ ‎∴点E的横坐标为﹣7或5,‎ ‎∴点E坐标(﹣7,﹣)或(5,﹣),此时点F(﹣1,﹣),‎ ‎∴以A,B,E,F为顶点的平行四边形的面积=6×=.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(3)如图所示,①当C为顶点时,CM1=CA,CM2=CA,作M1N⊥OC于N,‎ 在RT△CM1N中,CN==,‎ ‎∴点M1坐标(﹣1,2+),点M2坐标(﹣1,2﹣).‎ ‎②当M3为顶点时,∵直线AC解析式为y=﹣x+1,‎ 线段AC的垂直平分线为y=x,‎ ‎∴点M3坐标为(﹣1,﹣1).‎ ‎③当点A为顶点的等腰三角形不存在.‎ 综上所述点M坐标为(﹣1,﹣1)或(﹣1,2+)或(﹣1.2﹣).‎ ‎【点评】本题考查二次函数综合题、平行四边形的判定和性质、勾股定理等知识,解题的关键是熟练掌握抛物线与坐标轴交点的求法,学会分类讨论的思想,属于中考压轴题.‎ ‎34. (2016·山东省东营市·12分)在平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.‎ ‎(1)若抛物线过点C、A、A′,求此抛物线的解析式;‎ ‎(2)点M是第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;‎ ‎(3)若P为抛物线上的一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q 构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【知识点】平行四边形——平行四边形的性质、旋转——旋转的性质、二次函数——确定二次函数的表达式(待定系数法)、函数与几何动态——运动产生的面积问题及运动产生的特殊四边形问题、分类讨论思想、实际问题与数学建模——函数模型 ‎【思路分析】(1)先由OA′=OA得到点A′的坐标,再用点C、A、A′的坐标即可求此抛物线的解析式;(2)连接AA′, 过点M 作MN⊥x轴,交AA′于点N,把△AMA′分割为△AMN和△A′MN, △AMA′的面积=△AMA′的面积+△AMN的面积=OA′•MN,设点M的横坐标为x,借助抛物线的解析式和AA′的解析式,建立MN的长关于x的函数关系式,再据此建立△AMA′的面积关于x的二次函数关系式,再求△AMA′面积的最大值以及此时M的坐标;(3)在P、N、B、Q 这四个点中,B、Q 这两个点是固定点,因此可以考虑将BQ作为边、将BQ作为对角线分别构造符合题意的图形,再求解.‎ ‎【解答】解:(1)∵YABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,点A的坐标是(0,4),∴点A′的坐标为(4,0),点B的坐标为(1,4).‎ ‎∵抛物线过点C,A,A′,设抛物线的函数解析式为y=ax2+bx+c(a≠0),可得:‎ . 解得:.∴抛物线的函数解析式为y=-x2+3x+4.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(2)连接AA′,设直线AA′的函数解析式为y=kx+b,可得 .解得:.‎ ‎∴直线AA'的函数解析式是y=-x+4.‎ 设M(x,-x2+3x+4),‎ S△AMA′=×4×[-x2+3x+4一(一x+4)]=一2x2+8x=一2(x-2)2+8.‎ ‎∴x=2时,△AMA′的面积最大S△AMA′=8.‎ ‎∴M(2,6).‎ ‎(3)设P点的坐标为(x,-x2+3x+4),当P、N、B、Q构成平行四边形时,‎ ‎①当BQ为边时,PN∥BQ且PN=BQ,‎ ‎∵BQ=4,∴一x2+3x+4=±4.‎ 当一x2+3x+4=4时,x1=0,x2=3,即P1(0,4),P2(3,4);‎ 当一x2+3x+4=一4时,x3=,x4=,即P3(,-4),P4(,-4);‎ ‎②当BQ为对角线时,PB∥x轴,即P1(0,4),P2(3,4);‎ 当这个平行四边形为矩形时,即Pl(0,4),P2(3,4)时,N1(0,0),N2(3,0).‎ 综上所述,当P1(0,4),P2(3,4),P3(,-4),P4(,-4)时,P、N、B、Q构成平行四边形;当这个平行四边形为矩形时,N1(0,0),N2(3,0).‎ ‎【方法总结】(1)求出抛物线上三个点的坐标,就可以用待定系数法确定抛物线的表达式;‎ ‎(2)在平面直角坐标系中解决运动产生的面积问题时,常设法建立所求面积与运动点的横坐标之间的函数关系式,借助建立的函数关系式再解决面积的最值 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 问题;(3)在解决运动产生的平行四边形或特殊四边形问题时,先确定其四个顶点中的固定点,分别以固定点的连线为四边形的一边或一条对角线,构造符合要求的图形求解,这类问题的答案往往有多个解,要分类讨论.‎ ‎35.如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).‎ ‎(1)求抛物线m的解析式;‎ ‎(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;‎ ‎(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.‎ ‎【考点】二次函数综合题.‎ ‎【分析】(1)抛物线顶点在x轴上则可得出顶点纵坐标为0,将解析式进行配方就可以求出a的值,继而得出函数解析式;‎ ‎(2)利用轴对称求最短路径的方法,首先通过B点关于l的对称点B′来确定P点位置,再求出直线B′E的解析式,进而得出P点坐标;‎ ‎(3)可以先求出直线FD的解析式,结合以线段FQ为直径的圆恰好经过点D这个条件,明确∠FDG=90°,得出直线DG解析式的k值与直线FD解析式的k值乘积为﹣1,利用D点坐标求出直线DG解析式,将点Q坐标用抛物线解析式表示后代入DG直线解析式可求出点Q坐标.‎ ‎【解答】解:(1)∵抛物线y=ax2﹣6ax+c(a>0)的顶点A在x轴上 ‎∴配方得y=a(x﹣3)2﹣‎9a+1,则有﹣‎9a+1=0,解得a=‎ ‎∴A点坐标为(3,0),抛物线m的解析式为y=x2﹣x+1;‎ ‎(2)∵点B关于对称轴直线x=3的对称点B′为(6,1)‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴连接EB′交l于点P,如图所示 设直线EB′的解析式为y=kx+b,把(﹣7,7)(6,1)代入得 ‎ 解得,‎ 则函数解析式为y=﹣x+‎ 把x=3代入解得y=,‎ ‎∴点P坐标为(3,);‎ ‎(3)∵y=﹣x+与x轴交于点D,‎ ‎∴点D坐标为(7,0),‎ ‎∵y=﹣x+与抛物线m的对称轴l交于点F,‎ ‎∴点F坐标为(3,2),‎ 求得FD的直线解析式为y=﹣x+,若以FQ为直径的圆经过点D,可得∠FDQ=90°,则DQ的直线解析式的k值为2,‎ 设DQ的直线解析式为y=2x+b,把(7,0)代入解得b=﹣14,则DQ的直线解析式为y=2x﹣14,‎ 设点Q的坐标为(a,),把点Q代入y=2x﹣14得 ‎ ‎=‎2a﹣14‎ 解得a1=9,a2=15.‎ ‎∴点Q坐标为(9,4)或(15,16).‎ ‎ ‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费

资料: 7.8万

进入主页

人气:

10000+的老师在这里下载备课资料